课时教学设计
课时 编号 课题 主备人 审核
11-1-3 图形的平移(3)
教学 目标 1、能利用点的平移规律将平面图形进行平移. 2、感受并了解图形的平移变化与点的坐标变化之间的关系. 3、培养学生主动探索,敢于实践的创新精神,让学生学会主动寻求解决问题的途径,从成功中体会研究数学问题的乐趣,从而增强学生学习数学的兴趣,树立学好数学的信心.
教学 准备 笔,练习本
教学 导入 已知点A的坐标为(-2,1)。将点A分别向左、向右各平移5个单位长度,描出平移后点的位置,写出它的坐标。如果将点A分别向上、向下各平移3个单位长度呢?你发现经过以上平移后,点A的坐标发生了哪些变化?
活动 (一) 1.如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2). (1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系? (2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系? 解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到. (1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”相应的变为“横坐标都加3”“纵坐标都加2”,分别能得出什么结论?画出得到的图形. (2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?画出得到的图形. 归纳上面的作图与分析,你能得到什么结论? 在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,得到的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,得到的新图形就是把原图形向上(或下)平移a个单位长度. 简单地表示为
活动 (二) 2.探究图形的平移与坐标的变化 正方形ABCD四个顶点的坐标分别是点A(–2,4),B(–2,3),C(–1,3),D(–1,4),将正方形ABCD向下平移7个单位长度,再向右平移8个单位长度,两次平移后四个顶点相应变为点E,F,G,H,它们的坐标分别是什么?如果直接平移正方形ABCD,使点A移到点E,它和我们前面得到的正方形位置相同吗? 一般地,将一个图形依次沿两个坐标轴方向平移所得到的图形,可以通过将原来的图形作一次平移得到.
自主 训练 3.例题分析. 如图4-14,点A,B,C的坐标分别为A(1,-1),B(3,1),C(2,3),将△ABC平移后得到△A′B′C′,已知点A平移到点A′(-3,1). (1)写出B′,C′两点的坐标; (2)画出△A′B′C′. 分析:点A(1,-1)平移到点A′(-3,1)时,横坐标减小了4,纵坐标增加了2,所以B′,C′两点的横坐标比B,C两点的横坐标也应分别减小4,而纵坐标分别增加2. 解:(1)点B′的坐标为(3-4,1+2),即(-1,3);点C′的坐标为(2-4,3+2),即(-2,5). (2)画出点B′,C′,分别连接A′B′,B′C′,C′A′(如图4-15),△A′B′C′就是所求的三角形. 对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
作业 P171 练习1,2
教学 思考 学完本节课你有什么收获,谈谈自己的体会,最后师生共同总结归纳.