中小学教育资源及组卷应用平台
第九章《不等式与不等式组》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一、选择题(每题3分,共30分)
1.不等式组的解集为( )
A. B. C. D.无解
2.不等式的非负整数解有( )
A.1个 B.2个 C.3个 D.4个
3.已知正整数满足,那么代数式的值是( )
A. B. C. D.
4.一元一次不等式组的解集是( )
A. B. C. D.或
5. 小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有
A.5种 B.4种 C.3种 D.2种
6. 某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为
A.13 B.14 C.15 D.16
7. 若关于x的不等式组的解集是x>a,则a的取值范围是
A.a<2 B.a≤2 C.a>2 D.a≥2
8.不等式组的解集是( )
A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4
9.去年某市空气质量良好(二级以上)的天数与全年天数(365天)之比达到64%,如果明年(365天)这样的比值要超过80%,那么明年空气质量良好的天数比去年至少要增加的天数为( )
A.58 B.59 C.60 D.61
10.用若干辆载重量为6千克的货车运一批货物,若每辆汽车只装4千克,则剩下18千克货物;若每辆汽车只装6千克,则最后一辆货车装的货物不足5千克.若设有x辆货车,则x应满足的不等式组是( )
A. B.
C. D.
二、填空题(每题3分,共24分)
11. x的与5的差不小于3,用不等式可表示为__________.
12.设x >y,则x+2___y+2, -3x___-3y, x-y___0, x+y___2y.
13.当x_____时,式子3x-5的值大于5x+3的值.
14.当x_____时,代数式x-3是非正数.
15.不等式x≤的正整数解为______,不等式-2≤x<1的整数解为__________.
16.若不等式组有解,则m的取值范围是________.
17. 如图所示,点C位于点A、B之间(不与A、B重合),点C表示,则x的取值范围是__________.
18. 在某校有住校男生若干名,若每间宿舍住4名,则还剩下20名未住下;若每间住宿8名,则一部分宿舍没注满,且无空房。该校共有男生____名。
三、解答题(共46分)
19.(8分)解不等式(组):
(1)x>x+1 (2)+1≥2x(把它的解集在数轴上表示出来)
(3)(把它的解集在数轴上表示出来) (4)
20.(6分)关于x,y的方程组的解满足x>y.求m的最小整数值.
21.(8分)已知关于x,y的方程组
(1)求这个方程组的解;
(2)当m取何值时,这个方程组的解x大于1,y不小于-1.
22.(8分)若不等式3(x+1)-1<4(x-1)+3的最小整数解是方程x-mx=6的解,求m2-2m-11的值.
(8分)一个工程队原定在10天内至少要挖土600m3,在前两天一共完成了120m3,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m3?
24.(8分)用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表:
甲种原料 乙种原料
维生素C含量(单位/千克) 800 200
原料价格(元/kg) 18 14
(1)现制作这种果汁200kg,要求至少含有52 000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;
(2)如果还要求购买甲、乙两种原料的费用不超过1 800元,那么请你写出所需甲种原料的质量x(kg)应满足的另一个不等式.
参考答案:
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案 B C A C C B D D B D
二、填空题
11.x-5≥3 12.> < > > 13.x<-4 14.x≤3 15.0. -2,-1,0
16.1≤m<2 17. .18. 44
三、解答题
19.解:(1)x>x+1,
x﹣x>1,
x>1,
x>2;
(2)+1≥2x,
3x﹣1+2≥4x,
3x﹣4x≥1﹣2,
﹣x≥﹣1,
x≤1,
把它的解集在数轴上表示出来为:
(3),
由①得x≥﹣2,
由②得x>,
故不等式组的解集为:x>.
把它的解集在数轴上表示出来为:
(4),
由①得x≥2,
由②得x<﹣2.
故不等式组无解.
20,关于x,y的方程组的解满足x>y.求m的最小整数值.
解:1
21.解:(1)
①+②,得x=.①-②,得y=.
∴这个方程组的解为
(2)由题意得,解得1<m≤5.
22.解:解不等式3(x+1)-1<4(x-1)+3,得x>3.
它的最小整数解是x=4.把x=4代入方程x-mx=6,
得m=-1,∴m2-2m-11=-8.
23.解:设平均每天挖土xm3,
由题意得:(10﹣2﹣2)x≥600﹣120,
解得:x≥80.
答:平均每天至少挖土80m3.
24.解:(1)若所需甲种原料的质量为xkg,则需乙种原料(200﹣x)kg.
根据题意,得800x+200(200﹣x)≥52000;
(2)由题意得,18x+14(200﹣x)≤1800.