《比例的意义》教学设计
【教学内容】《义务教育教科书·数学》(青岛版) 六年制六年级下册第三单元信息窗1。
【教学目标】
1.在具体情境中,理解比例的意义,知道比例各部分的名称和写法,会应用求比值的方法正确判断两个比能否组成比例。
2.在探索比例的意义过程中进一步发展合情推理能力,明确比和比例的区别
3.通过动手、动脑、观察、计算、讨论等方式,使学生 ( http: / / www. / )自主获取知识,全面参与教学活动。
4.感受数学与生活的密切联系,让学生经历探究的过程,体验成功的快乐。
【教学重点】理解比例的意义。
【教学难点】应用比例的意义判断两个比能否组成比例,并能正确组成比例。
【教学过程】
1、创设情境,复习引新
1. 激发兴趣:
同学们, 我们香江路第一小学是知名的书香校园,“润”文化是我们的核心文化,老师带来了三张“润”字的图片,你喜欢看哪一张?为什么?(预设:第一张协调,看起来舒服)其实你们所说的舒服和协调和我们今天要学习的比例的知识有关。(板书:比例)
【设计意图】兴趣是最好的老师,课的伊始调动孩子的好奇心,激发学习热情。
2.复习回顾
谈话:
(1)上学期我们学过了比的有关知识,谁能举一个比的例子并求出它的比值?
(2)能告诉大家求比值的方法是什么吗?(比的前项除以比的后项)
(3)今天我们要学习的比例和比有着密切的联系,怎么样,想探究吗?
【设计意图】从学生 ( http: / / www..cn / )已有的知识经验入手, 引起了学生对已有知识的回忆,让学生“温故”而“启新”,为新课做好准备。
3.创设情境,提出问题
(1)谈话:大家都知道,青岛是著名的旅游城市,除了旅游,青岛啤酒享誉世界各地。这节课,让我们一起去探索啤酒生产中的数学。
(2)出示信息图:
这辆货车正在运输啤酒的主要生产原料——大麦芽。
①从图中你发现了哪些数学信息?
②你能提出和比有关的数学问题吗?
预设: 货车第一天运输量和运输次数的比是多少?
货车第二天运输量和运输次数的比是多少?
货车第一天和第二天的运输量的比是多少?
… …
教师根据学生的回答,有选择的在黑板上板书:
16 :2; 32 :4;
【设计意图】学生有了问题,才会有思考和探索,有了探索才会有创新,有发展。这一环节的设计,不仅充分重视培养学生“学会提问”,同时还避免让学生漫无边际提出问题所造成的弊端,使“提问”真正成为教学过程中有意义的、有价值的活动,也为后面的教学做好铺垫。
二、自主学习,探究新知
(一)理解比例的意义
1.观察思考
谈话:学习数学,我们不仅要善于提问,还要善于观察和思考。请你仔细观察每天运输量和运输次数这两个比:16:2和32:4 它们有什么关系?
先独立思考 同位讨论交流
预设:
(1)运输量和运输次数的比的比值是相等的,都等于8。
(2)这个比值表示平均每次的运输量是多少吨。
(3)最简比都是8:1.
谈话:像16:2=8;32:4=8这样比值相等,说明这两个比相等,那么这两个比之间可用哪个数学符号连接?
预设:等号(师在两个比之间用添上“=”)
这两个比就组成了一个等式
并请学生把这个式子读一下。
16:2 = 32:4
【设计意图】从生活问题入手,既复习了比,同时为学生概括比例的意义生成了具体的教学资源。
2.自主探究
出示最初的情境图
谈话:根据这些数据,结合刚刚提出的和比有关的数学问题,你还能写出哪些这样的等式?
学生独立完成后同位交流,教师巡视了解情况。
3.汇报交流
巡视过程中让学生板书:
预设:2 :16= 4 :32; 16 :32=2 :4; 32 :16=4 :2
4.总结意义:
(1)谈话:仔细观察这些等式,有什么共同点?
预设:两个比 比值相等
(2)谈话:像这样的等式叫做比例。(补充课题:比例的意义)
(3)你能试着说一说什么叫比例吗?(根据学生回答完整板书:表示两个比相等的式子叫做比例。)
(4)齐读意义
(5)引导:你认为这一概念的关键词是什么?
预设:相等、两个比、式子。
(6)追问:怎样才能知道两个比是否相等呢?
预设:求出这两个比的比值。
(7)继续追问:判断两个比能否组成比例的关键是什么?
预设:看比值是否相等。
【设计意图】这里利用对象与背景之间的差异,凸显了组成比例的两个重要元素:“两个比”、“相等”,使学生概括比例的意义成水到渠成之势。
5.巩固练习:
(1)写比例
引导:刚才大家在具体情境中找到了比例,试着自己写一个比例,然后同位交换验证。
汇报交流:找两组同位实物投影汇报。
追问:这些都是比例吗?它们符合了什么条件?
预设:是,因为比值相等。
(2)下面的两个比能不能组成比例,为什么?
学生独立完成 集体订正 关键说为什么。
2:2.5和4:5
预设:能,因为比值都是0.8,所以可以组成比例。
预设:不能,比值不相等。
【设计意图】形成了概念,建立了概念,不等于就掌握了概念。只有在运用过程中才能加深理解,切实掌握。通过正反实例的判断,突出了组成比例的两个比比值必须相等,及时有效地巩固了比例的意义。再者,从自己写比例,到根据一组比补充写比例巩固加深了对概念的理解。
(二)自主学习,认识比例各部分的名称
1. 谈话:组成比例的四个数,有自己的名称,赶紧打开课本学习一下吧。
学生自学。
交流:谁来汇报一下你的收获?
预设a:组成比例的这四个数叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。如 16∶2= 32∶4中16和4是外项,32和2是内项。(板书:内项和外项)
预设b:比例可以写成分数的形式,如=
追问:在=中,内项外项各是什么?
预设:内项和外项是交叉的。
【设计意图】学生自学比例的各部分名称,把学习的主动权还给他们,既培养了他们的自学能力,又处理好了讲授与自学的关系。
(三)比和比例的区别和联系。
师:通过刚才的学习,我们知道了什么是比例,你觉得比例和我们以前学过的比有什么区别?
1.学生认真观察和比较。
2.小组内交流自己的想法。
3.全班汇报交流。
预设:
比是表示两个数相除,有两个项;而比例是表示两个比相等的式子,有四个项。
4. 总结提升。
根据学生的回答,教师用课件出示表格。
比4︰6 意义:表示两个数相除。组成:由两项组成。
比例2︰3=4︰6 意义:表示两个比相等的式子。组成:由四项组成,比是比例的一部分。
【设计意图】这里从比较两者的不同点和联系出发,可以使学生从心理上区分了这两个概念。使学生在在运用过程中才能加深对概念的理解,切实掌握“比例”这个概念。
三、看书质疑
学生独立看书36-37页,查找不明白的地方。
四、巩固应用,拓展提升
学生练习纸上独立答题 集体订正
1.判断:
(1)由两个比组成的式子叫做比例。( )
(2)24 : 16 = 60 :40可以写成=。( )
(3)0.1:0.3与2:6能组成比例。( )
(4)如果两个比的比值相等,那么这两个比一定能组成比例。( )
集体订正时要说明为什么?
2.完成课本自主练习第1题。
独立思考,自主完成
交流时说一说:怎样根据比例的意义判断两个比是否组成比例。
3.自主练习第4题。
(1) 学生独立计算并判断。
(2)汇报交流,重点谈想的过程:根据什么判断的。(比例的意义判断。)
4. 请大家当一回警察叔叔,帮忙破案:
某罪犯作案后逃离现场,只留下一只长25厘米的脚印。研究表明:人体身高与脚长的比大约是7:1,你能推测罪犯身高约是多少厘米吗?
预设:175厘米。
谈话:说一说是怎样推测的?
谈话:谢谢你们这些小警察,你看,学好了数学,我们还可以帮警察叔叔破案呢!
5.介绍黄金比例,欣赏图片。
(1)介绍黄金比例:
谈话:在数学里,有一个特殊的比例,它被公认为是美学与科学的完美结合,它就是黄金比例,让我们一起来了解一下。
课件出示:在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,经过研究发现:将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618,这个比例被公认为是最能引起美感的比例,因此被称为黄金比例。
(2)谈话:让我们一起欣赏生活中黄金比例的美妙与神奇吧。
(3)重新出示引入课题的三张“润”字图片:
谈话:同学们认为第一张看起来舒服和协调,就是因为它最接近黄金比例。
(4)出示:其实比黄金更可贵的是:
——对自然科学的好奇之心
——对数学问题的探究之心
——对宇宙万物的观赏之乐
【设计意图】通过不同形式的练习,使不同程度的学生得到不同的巩固,体现人人都能获得良好的数学教育,人人都能获得必需的知识,不同的学生在数学上得到不同的发展。
五、全课小结,畅谈收获。
今天大家表现得都很出色,那么你能不能告诉老师,通过本节课的学习,你有哪些收获?
预设:学生可能会回答知道了什么是比例,比例的各部分名称是什么…….
【设计意图】引导学生从知识、方法、感受等方面全面总结。帮助学生积累一些基本的活动经验,养成全面回顾的习惯,体验学习的成功感,培养自我反思、全面概括的能力。
板书设计:
比例的意义
表示两个比相等的式子叫做比例
PAGE