《位置的确定》单元中考试题精选
时间;45分钟 分值:100分
一、选择题(每小题3分,共36分)
1.(2012菏泽)点P(﹣2,1)在平面直角坐标系中所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.(2012成都)如图,在平面直角坐标系xOy中,点P(,5)关于y轴的对称点的坐标为( )
A.( ,) B.(3,5) C.(3.) D.(5,)
3.(2012四川广安)在平面直角坐标系xOy中,如果有点P(﹣2,1)与点Q(2,﹣1),那么:①点P与点Q关于x轴对称;②点P与点Q关于y轴对称;③点P与点Q关于原点对称;④点P与点Q都在y=﹣的图象上,前面的四种描述正确的是( )
A.
①②
B.
②③
C.
①④
D.
③④
4.(2012?济宁)如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )
A.
﹣4和﹣3之间
B.
3和4之间
C.
﹣5和﹣4之间
D.
4和5之间
5.(2012?聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=﹣x分别交于A1,A2,A3,A4…,则点A30的坐标是( )
A.(30,30) B.(﹣8,8) C.(﹣4,4) D.(4,﹣4)
6.(2012江苏南通)线段MN在直角坐标系中的位置如图所示,线段M1N1与MN关于y轴对称,则点M的对应的点M1的坐标为( )
A.(4,2) B.(-4,2) C.(-4,-2) D.(4,-2)
7. (2012湖北荆门)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是( )
A. B.C. D.
8、 (2011怀化)如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( )
A.(-1,1) B.(-2,-1) C.(-3,1) D.(1,-2)
9、(2011乌兰察布)在平面直角坐标系中,已知线段AB的两个端点分别是A( 4 ,-1).B(1,1) 将线段AB平移后得到线段A 'B',若点A'的坐标为 (-2 , 2 ) ,则点 B'的坐标为( )
A . ( -5 , 4 ) B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1)
10、(2011日照) 以平行四边形ABCD的顶点A为原点,直线AD为x轴建立直角坐标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是( )
(A)(3,3) (B)(5,3) (C)(3,5) (D)(5,5)
11、(2011泰安)若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转900得到OA',则点A'的坐标为( )
A.(3,-6) B.(-3,6) C.(-3,-6) D.(3,6)
12、(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为( )
A.(,) B.(,) C.(2012泰安) D.(,)
二、填空题(每小题3分,共27分)
13、(2011邵阳)在平面直角坐标系中,点(1,3)位于第________象限。
14.(2012?扬州)在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是
15.(2012安顺)以方程组的解为坐标的点(x,y)在第 象限.
16、(2011盐城)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4). 将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是 .
17、(2012?烟台)平行四边形ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C的坐标为 .
18、(2011威海)正方形ABCD在平面直角坐标系中的位置如图所示,已知A点的坐标(0,4),B点的坐标(-3,0),则C点的坐标是 .
19、(2012山西)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是 .
20、(2012泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为 .
21、(2012?德州)如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为 .
三、解答题(共37分)
22、(12分)(2011安徽)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.
(1)填写下列各点的坐标:A4( , ),A8( , ),A12( , );
(2)写出点A4n的坐标(n是正整数);
(3)指出蚂蚁从点A100到点A101的移动方向.
23、(12分)(2012?梅州)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)
(1)点A关于点O中心对称的点的坐标为 ;
(2)点A1的坐标为 ;
(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为 .
24、(13分)(2011永州)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(,5),(,3).
⑴请在如图所示的网格平面内作出平面直角坐标系;
⑵请作出△ABC关于y轴对称的△A′B′C′;
⑶写出点B′的坐标.
《位置的确定》单元中考试题精选
1、B.
2、B. 3、D解析:∵点P(﹣2,1)与点Q(2,﹣1),∴P、Q两点关于原点对称,故①②错误,③正确;∵(﹣2)×1=2×(﹣1),∴点P与点Q都在y=﹣的图象上,故④正确.
4、A 解:∵点P坐标为(﹣2,3),∴OP==,
∵点A、P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=,∵9<13<16,
∴3<<4.∵点A在x轴的负半轴上,∴点A的横坐标介于﹣4和﹣3之间.
5、C解:∵30÷4=7…2,
∴A30在直线y=﹣x上,且在第二象限,
即射线OA30与x轴的夹角是45°,如图OA=8,∠AOB=45°,
∵在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,
∴OA30=8,
∵A30的横坐标是﹣8sin45°=﹣4,纵坐标是4,
即A30的坐标是(﹣4,4).
故选C.
6、D
7、A 解析:由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),
又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,
∴,
解得:,
在数轴上表示为:.
8、C 9、A 10、D 11、A
12、A 解析:连接OB,OB′,过点B′作B′E⊥x轴于E,
根据题意得:∠BOB′=105°,
∵四边形OABC是菱形,
∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,
∴△OAB是等边三角形,
∴OB=OA=2,
∴∠AOB′=∠BOB′﹣∠AOB=105°﹣60°=45°,OB′=OB=2,
∴OE=B′E=OB′?sin45°=,
∴点B′的坐标为:(,).
故选A.
13、一 14、m>2.
15、一 解析:,
①+②得,2y=3,
y=,
把y=代入①得,=x+1,
解得:x=,
因为0,>0,
根据各象限内点的坐标特点可知,
所以点(x,y)在平面直角坐标系中的第一象限.
16、(3,1) 17、(3,1).
∵平行四边形ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),
∴AB=CD=2﹣(﹣1)=3,DC∥AB,
∴C的横坐标是3,纵坐标和D的纵坐标相等,是1,
∴C的坐标是(3,1),
18、(-1,3)
19、(2,).解析:过点B作DE⊥OE于E,
∵矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,
∴∠CAO=30°,
∴AC=4,
∴OB=AC=4,
∴OE=2,
∴BE=2,
∴则点B的坐标是(2,),
20、45 解析:根据图形,到横坐标结束时,点的个数等于横坐标的平方,
例如:横坐标为1的点结束,共有1个,1=12,
横坐标为2的点结束,共有2个,4=22,
横坐标为3的点结束,共有9个,9=32,
横坐标为4的点结束,共有16个,16=42,
…
横坐标为n的点结束,共有n2个,
∵452=2025,
∴第2025个点是(45,0),
第2012个点是(45,13),
所以,第2012个点的横坐标为45.
21、(2,1006).解析:∵2012是4的倍数,
∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,
∴A2012在x轴上方,横坐标为2,
∵A4、A8、A12的纵坐标分别为2,4,6,
∴A12的纵坐标为2012×=1006.
22、⑴ A4(2,0); A8(4,0); A12(6,0); ⑵ A4n(2n,0);⑶ 向上.
23、(1)(﹣3,﹣2);(2)(﹣2,3);(3)π. 解析:(1)∵A(3,2),
∴点A关于点O中心对称的点的坐标为(﹣3,﹣2);
(2)(﹣2,3);
(3)根据勾股定理,OB==,
所以,弧BB1的长==π.
24、⑴⑵如图,⑶B′(2,1)