中小学教育资源及组卷应用平台
八年级下册《第18章 平行四边形》单元测试卷
一、选择题(共10小题,3*10=30)
1.(3分)如图,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是( )
A.AB=CD B.当AC⊥BD时,它是菱形
C.AB=AC D.当∠ABC=90°时,它是矩形
2.(3分)如图,点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB的长为半径作弧,两弧交于点D,分别连接AB,AD,CD,若∠ABC+∠ADC=120°,则∠A的度数是( )
A.100° B.110° C.120° D.125°
3.(3分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为( )
A.150° B.130° C.120° D.100°
4.(3分)如图,菱形ABCD中,∠D=150°,则∠1=( )
A.30° B.25° C.20° D.15°
5.(3分)如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是( )
A.2.5 B.3 C.4 D.5
6.(3分)下列说法中,正确个数有( )
①对顶角相等;
②两直线平行,同旁内角相等;
③对角线互相垂直的四边形为菱形;
④对角线互相垂直平分且相等的四边形为正方形.
A.1个 B.2个 C.3个 D.4个
7.(3分)平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形( )
A.①② B.①③ C.①④ D.④⑤
8.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
A.1 B. C.4﹣2 D.3﹣4
9.(3分)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有 ADCE中,DE最小的值是( )
A.2 B.3 C.4 D.5
10.(3分)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:
①DF=CF;
②BF⊥EN;
③△BEN是等边三角形;
④S△BEF=3S△DEF.
其中,将正确结论的序号全部选对的是( )
A.①②③ B.①②④ C.②③④ D.①②③④
二.填空题(共8小题,3*8=24)
11.(3分)如果一个四边形ABCD是平行四边形,那么再添加条件 ,就可以变为矩形.(只需填一个条件)
12.(3分)已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为 .
13.(3分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 .
14.(3分)如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为 .
15.(3分)如图,在 ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为 .
16.(3分)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长为 cm.
17.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于 .
18.(3分)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,
①存在无数个四边形MNPQ是平行四边形;
②存在无数个四边形MNPQ是矩形;
③存在无数个四边形MNPQ是菱形;
④至少存在一个四边形MNPQ是正方形.
所有正确结论的序号是 .
三.解答题(7小题,共66分)
19.(8分)如图, ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.
20.(8分)如图,在 ABCD中,E、F是对角线AC上的两点,且AE=CF.
(1)写出图中所有的全等三角形;
(2)求证:BE=DF.
21.(8分)如图, ABCD的对角线AC、BD相交于点O,AE=CF.
(1)求证:△BOE≌△DOF;
(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.
22.(10分)如图,在 ABCD中,E,F两点在对角线BD上,BE=DF.
(1)求证:AE=CF;
(2)当四边形AECF为矩形时,请求出的值.
23.(10分)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
24.(10分)如图, ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.
(1)求证:OE=OF;
(2)若EF⊥AC,△BEC的周长是10,求 ABCD的周长.
25.(12分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形AECF的周长.
八年级下册《第18章 平行四边形》单元测试卷
参考答案与试题解析
一、选择题(共10小题,3*10=30)
1.(3分)如图,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是( )
A.AB=CD
B.当AC⊥BD时,它是菱形
C.AB=AC
D.当∠ABC=90°时,它是矩形
【解答】解:A、平行四边形对边相等,故A正确;
B、对角线相互垂直的平行四边形是菱形,故正确;
C、无法得到AB=AC,故此选项错误,符合题意;
D、有一个角是90°的平行四边形是矩形.故正确.
故选:C.
2.(3分)如图,点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB的长为半径作弧,两弧交于点D,分别连接AB,AD,CD,若∠ABC+∠ADC=120°,则∠A的度数是( )
A.100° B.110° C.120° D.125°
【解答】解:∵AD=CB,AB=CD,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD∥BC,
∴∠A+∠ABC=180°,
∵∠ABC+∠ADC=120°,
∴∠ABC=60°,
∴∠A=120°,
故选:C.
3.(3分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为( )
A.150° B.130° C.120° D.100°
【解答】解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∵∠BED=150°,
∴∠ABE=∠AEB=30°,
∴∠A=180°﹣∠ABE﹣∠AEB=120°.
故选:C.
4.(3分)如图,菱形ABCD中,∠D=150°,则∠1=( )
A.30° B.25° C.20° D.15°
【解答】解:∵四边形ABCD是菱形,∠D=150°,
∴AB∥CD,∠BAD=2∠1,
∴∠BAD+∠D=180°,
∴∠BAD=180°﹣150°=30°,
∴∠1=15°;
故选:D.
5.(3分)如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是( )
A.2.5 B.3 C.4 D.5
【解答】解:∵四边形ABCD为菱形,
∴CD=BC==5,且O为BD的中点,
∵E为CD的中点,
∴OE为△BCD的中位线,
∴OE=CB=2.5,
故选:A.
6.(3分)下列说法中,正确个数有( )
①对顶角相等;
②两直线平行,同旁内角相等;
③对角线互相垂直的四边形为菱形;
④对角线互相垂直平分且相等的四边形为正方形.
A.1个 B.2个 C.3个 D.4个
【解答】解:①对顶角相等,故①正确;
②两直线平行,同旁内角互补,故②错误;
③对角线互相垂直且平分的四边形为菱形,故③错误;
④对角线互相垂直平分且相等的四边形为正方形,故④正确,
故选:B.
7.(3分)平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形( )
A.①② B.①③ C.①④ D.④⑤
【解答】解:由①得对角线相等的平行四边形是矩形,加上④得,有一组邻边相等的矩形是正方形,故选C.
8.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
A.1 B. C.4﹣2 D.3﹣4
【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,
∵∠BAE=22.5°,
∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,
在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,
∴∠DAE=∠AED,
∴AD=DE=4,
∵正方形的边长为4,
∴BD=4,
∴BE=BD﹣DE=4﹣4,
∵EF⊥AB,∠ABD=45°,
∴△BEF是等腰直角三角形,
∴EF=BE=×(4﹣4)=4﹣2.
故选:C.
9.(3分)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有 ADCE中,DE最小的值是( )
A.2 B.3 C.4 D.5
【解答】解:∵在Rt△ABC中,∠B=90°,
∴BC⊥AB.
∵四边形ADCE是平行四边形,
∴OD=OE,OA=OC.
∴当OD取最小值时,DE线段最短,此时OD⊥BC.
∴OD∥AB.
又点O是AC的中点,
∴OD是△ABC的中位线,
∴OD=AB=1.5,
∴ED=2OD=3.
故选:B.
10.(3分)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:
①DF=CF;
②BF⊥EN;
③△BEN是等边三角形;
④S△BEF=3S△DEF.
其中,将正确结论的序号全部选对的是( )
A.①②③ B.①②④ C.②③④ D.①②③④
【解答】解:∵四边形ABCD是矩形,
∴∠D=∠BCD=90°,DF=MF,
由折叠的性质可得:∠EMF=∠D=90°,
即FM⊥BE,CF⊥BC,
∵BF平分∠EBC,
∴CF=MF,
∴DF=CF;故①正确;
∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,
∴∠BFM=∠BFC,
∵∠MFE=∠DFE=∠CFN,
∴∠BFE=∠BFN,
∵∠BFE+∠BFN=180°,
∴∠BFE=90°,
即BF⊥EN,故②正确;
∵在△DEF和△CNF中,
,
∴△DEF≌△CNF(ASA),
∴EF=FN,
∴BE=BN,
假设△BEN是等边三角形,则∠EBN=60°,∠EBA=30°,
则AE=BE,又∵AE=AD,则AD=BC=BE,
而明显BE=BN>BC,
∴△BEN不是等边三角形;故③错误;
∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,
∴BM=BC=AD=2DE=2EM,
∴BE=3EM,
∴S△BEF=3S△EMF=3S△DEF;
故④正确.
故选:B.
二.填空题(共8小题,3*8=24)
11.(3分)如果一个四边形ABCD是平行四边形,那么再添加条件 AC=BD ,就可以变为矩形.(只需填一个条件)
【解答】解:∵四边形ABCD是平行四边形,AC=BD,
∴平行四边形ABCD是矩形.
故答案为:AC=BD.
12.(3分)已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为 1或5 .
【解答】解:旋转得到F1点,
∵AE=AF1,AD=AB,∠D=∠ABC=90°,
∴△ADE≌△ABF1,
∴F1C=1;
旋转得到F2点,同理可得△ABF2≌△ADE,
∴F2B=DE=2,
F2C=F2B+BC=5.
13.(3分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 8 .
【解答】解:如图,连接BD交AC于点O,
∵四边形ABCD为正方形,
∴BD⊥AC,OD=OB=OA=OC,
∵AE=CF=2,
∴OA﹣AE=OC﹣CF,即OE=OF,
∴四边形BEDF为平行四边形,且BD⊥EF,
∴四边形BEDF为菱形,
∴DE=DF=BE=BF,
∵AC=BD=8,OE=OF==2,
由勾股定理得:DE==2,
∴四边形BEDF的周长=4DE=4×2=8,
故答案为:8.
14.(3分)如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为 (3,4) .
【解答】解:过点B作BD⊥OA于D,
∵四边形OABC是菱形,
∴OC=OA=AB=BC,BC∥OA,
设AB=x,则OA=x,AD=8﹣x,
在Rt△ABD中,AB2=AD2+BD2,
即x2=(8﹣x)2+16,
解得:x=5,
∴BC=5,
∴C点的坐标为(3,4).
故答案为:(3,4).
15.(3分)如图,在 ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为 2 .
【解答】解:根据作图的方法得:BE平分∠ABC,
∴∠ABE=∠CBE
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=5,
∴∠AEB=∠CBE,
∴∠ABE=∠AEB,
∴AE=AB=3,
∴DE=AD﹣AE=5﹣3=2;
故答案为:2.
16.(3分)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长为 2 cm.
【解答】解:连接AC,与EF交于O点,
∵E点在AB上,F在CD上,A、C点重合,EF是折痕,
∴OA=OC,EF⊥AC,AE=CE,
∵四边形ABCD是矩形,
∴AB∥CD,∠B=90°,AB=8cm,BC=4cm,
∴AC==4(cm),
∴OC=2cm,
设AE=CE=xcm,则BE=(8﹣x)cm,
在Rt△BCE中,由勾股定理得:(8﹣x)2+42=x2,
解得:x=5,
∴CE=5cm,
∴OE===(cm),
∵AB∥CD,
∴∠OAE=∠OCF,
在△AOE和△COF中,,
∴△AOE≌△COF(ASA),
∴OE=OF,
∴EF=2OE=2cm,
故答案为:2.
17.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于 16或8 .
【解答】解:过D作DE⊥AB于E,
在Rt△ADE中,∵∠A=30°,AD=4,
∴DE=AD=2,AE=AD=6,
在Rt△BDE中,∵BD=4,
∴BE===2,
如图1,∴AB=8,
∴平行四边形ABCD的面积=AB DE=8×2=16,
如图2,AB=4,
∴平行四边形ABCD的面积=AB DE=4×2=8,
如图3,过B作BE⊥AD于E,
在Rt△ABE中,设AE=x,则DE=4﹣x,
∵∠A=30°,BE=x,
在Rt△BDE中,∵BD=4,
∴42=(x)2+(4﹣x)2,
∴x=2,x=4(不合题意舍去),
∴BE=2,
∴平行四边形ABCD的面积=AD BE=2×4=8,
如图4,当AD⊥BD时,平行四边形ABCD的面积=AD BD=16,
解法二:解:过点D作DE⊥AB于E,如图1,当点B在E的右边时,
∵∠A=30°,AD=4,
∴DE=AD=2,
∴AE=DE=6,
∴BE==2,
∴AB=AE+BE=8,
∴S四边形ABCD=8×2=16,
如图2,点B在E的左边时,
同理AE=6,BE=2,DE=2,
∴S四边形ABCD=4×2=8,
故答案为:16或8.
18.(3分)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,
①存在无数个四边形MNPQ是平行四边形;
②存在无数个四边形MNPQ是矩形;
③存在无数个四边形MNPQ是菱形;
④至少存在一个四边形MNPQ是正方形.
所有正确结论的序号是 ①②③ .
【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,
过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,
则四边形MNPQ是平行四边形,
故存在无数个四边形MNPQ是平行四边形;故正确;
②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;
③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;
④当四边形MNPQ是正方形时,MQ=PQ,
则△AMQ≌△DQP,
∴AM=QD,AQ=PD,
∵PD=BM,
∴AB=AD,
∴四边形ABCD是正方形,
当四边形ABCD为正方形时,四边形MNPQ是正方形,故错误;
故答案为:①②③.
三.解答题(7小题,共66分)
19.(8分)如图, ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.
求证:BE=DF.
【解答】证明:∵四边形ABCD是平行四边形,
∴OA=OC,OD=OB,
∵AF=CE,
∴OE=OF,
在△BEO和△DFO中,
,
∴△BEO≌△DFO,
∴BE=DF.
20.(8分)如图,在 ABCD中,E、F是对角线AC上的两点,且AE=CF.
(1)写出图中所有的全等三角形;
(2)求证:BE=DF.
【解答】解:(1)图中全等的图形有:△ABE≌△CDF,△ADF≌△CBE,△ABC≌△DCA;
(2)∵ABCD是平行四边形,
∴AB=CD,∠BAE=∠DCF,
又∵AE=CF,
∴△ABE≌△DCF(SAS),
∴BE=DF.
21.(8分)如图, ABCD的对角线AC、BD相交于点O,AE=CF.
(1)求证:△BOE≌△DOF;
(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,∴OE=OF,
在△BOE和△DOF中,
,
∴△BOE≌△DOF(SAS);
(2)解:四边形EBFD是矩形;理由如下:
∵OB=OD,OE=OF,
∴四边形EBFD是平行四边形,
∵BD=EF,
∴四边形EBFD是矩形.
22.(10分)如图,在 ABCD中,E,F两点在对角线BD上,BE=DF.
(1)求证:AE=CF;
(2)当四边形AECF为矩形时,请求出的值.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∴∠1=∠2.
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴AE=CF.
(2)解:∵四边形AECF为矩形,
∴AC=EF,
∴===2,
∵BE=DF,
∴当四边形AECF为矩形时,=2.
23.(10分)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
【解答】解:(1)∵AB∥CD,CE∥AD,
∴四边形AECD为平行四边形,∠2=∠3,
又∵AC平分∠BAD,
∴∠1=∠2,
∴∠1=∠3,
∴AD=DC,
∴四边形AECD是菱形;
(2)直角三角形.
理由:∵AE=EC
∴∠2=∠4,
∵AE=EB,
∴EB=EC,
∴∠5=∠B,
又因为三角形内角和为180°,
∴∠2+∠4+∠5+∠B=180°,
∴∠ACB=∠4+∠5=90°,
∴△ACB为直角三角形.
24.(10分)如图, ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.
(1)求证:OE=OF;
(2)若EF⊥AC,△BEC的周长是10,求 ABCD的周长.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴OD=OB,DC∥AB,
∴∠FDO=∠EBO,
在△DFO和△BEO中,,
∴△DFO≌△BEO(ASA),
∴OE=OF.
(2)解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,OA=OC,
∵EF⊥AC,
∴AE=CE,
∵△BEC的周长是10,
∴BC+BE+CE=BC+BE+AE=BC+AB=10,
∴ ABCD的周长=2(BC+AB)=20.
25.(12分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形AECF的周长.
【解答】(1)证明:∵EF是AC的垂直平分线,
∴AO=OC,∠AOE=∠COF=90°,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EAO=∠FCO,
在△AEO和△CFO中,
,
∴△AEO≌△CFO(ASA);
∴OE=OF
又∵OA=OC,
∴四边形AECF是平行四边形,
又∵EF⊥AC
∴平行四边形AECF是菱形;
(2)解:设AF=x,
∵EF是AC的垂直平分线,
∴AF=CF=x,BF=8﹣x,
在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,
42+(8﹣x)2=x2,
解得 x=5.
∴AF=5,
∴菱形AECF的周长为20.
om;学号:40371422
第1页(共1页)