课件11张PPT。高中数学 必修52.1 数列(1)(1)剧场座位: ,…
(2)彗星出现的年份: …
(3)细胞分裂的个数: …
(4)“一尺之棰”每日剩下的部分: …
(5)各年树木的枝干数: …
(6)我国参加次奥运会获金牌数: …
问题情境这些数字能否调换顺序?顺序变了之后所表达的意思变化了吗?
数列的一般形式可以写成
, 简记为建构教学数列的定义:按照一定次序排列的一列数称为数列. 项:数列中的每个数都叫做这个数列的项. 称为数列 的第1项(或称为首项), 称为第2项,…
称为第 项.数列的分类:有穷数列:项数有限的数列;
无穷数列:项数无限的数列.数学应用1.数列的概念和记号 与集合概念和记号的区别是什么? 数列中的项是有序的,而集合中的项是无序的;数列中的项可以重复,而集合中的元素不能重复.2.数列与函数有什么样的关系?想一想 根据数列的有序性,项数与项构成单值对应,所以数列是特殊的函数,定义域是正整数集,数列的函数图象是离散点.建构教学数列的通项公式: 一般地,如果数列 的第 项与序号之间的关系可以用一个公式来表示.那么这个公式叫做这个数列的通项公式.数列的通项公式就是相应函数的解析式.数学应用例1 已知数列的第 项 为 ,写出这个数列的首项、第2项和第3项. 数学应用例2 已知数列 的通项公式,写出这个数列的前n项,并作出它的图象:(1) ; (2)数学应用例3 写出数列的一个通项公式,使它的前4项分别是下列各数: ① 1,3,5,7, ; ②2,4,6,8
③-1,1,-1 ; ④0,2,0,2
⑤ ;
⑥ .
2.写出数列的一个通项公式,使它的前几项分别是下列各数:1.已知数列 通项公式为 ,那么 是它的第 项.3.已知数列 的首项 ,那么巩固练习第n项有n个9……课堂小结1.数列的概念;
2.求数列的通项公式的要领 .课后作业课本P31页练习-1,2,3,4,5.