第十八章平行四边形同步测试卷
一、单选题
1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是( )
A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D
C.AB∥CD,AD∥BC D.AB=CD,AD=BC
2.菱形的周长为8cm,高为1cm,则菱形两邻角度数比为( )
A.4:1 B.5:1 C.6:1 D.7:1
3.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )
A.75° B.60° C.55° D.45°
4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是( )
A.6cm B.9cm C.3cm D.12cm
5.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( )
A.选①② B.选②③ C.选①③ D.选②④
6.对角线相等且互相平分的四边形是( )
A.一般四边形 B.平行四边形 C.矩形 D.菱形
7.如图,平行四边形ABCD中,P是形内任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1,S2,S3,S4,则一定成立的是( )
A.S1+S2>S3+S4 B.S1+S2=S3+S4 C.S1+S2<S3+S4 D.S1+S3=S2+S4
8.若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是 ( )
A.菱形 B.对角线互相垂直的四边形
C.矩形 D.对角线相等的四边形
9.如图,P是矩形ABCD的对角线AC的中点,E是AD的中点,若AB=6,AD=8,则四边形ABPE的周长为( )
A.14 B.16 C.17 D.18
10.下列关于矩形的说法中正确的是( ).
A.对角线相等的四边形是矩形
B.矩形的对角线相等且互相平分
C.对角线互相平分的四边形是矩形
D.矩形的对角线互相垂直且平分
二、填空题
11.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为_____.
12.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.
13.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.
14.如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=2+,则线段OE的长为_____.
15.如图,在△ABC中,AB=AC,BC=6,点F是BC的中点,点D是AB的中点,连接AF和DF,若△DBF的周长是11,则AB=_____.
16.如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=_____.
三、解答题
17.如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5cm,AP=8cm,求△APB的周长.
18.如图,在 ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.
19.如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,求线段DH的长.
20.如图,DE是△ABC的中位线,延长DE至F,使EF=DE,连接BF.
(1)求证:四边形ABFD是平行四边形;
(2)求证:BF=DC.
试卷第1页,共3页
1.A
【详解】
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.∴C能判断;
平行四边形判定定理1,两组对角分别相等的四边形是平行四边形;∴B能判断;
平行四边形判定定理2,两组对边分别相等的四边形是平行四边形;∴D能判定;
平行四边形判定定理3,对角线互相平分的四边形是平行四边形;
平行四边形判定定理4,一组对边平行相等的四边形是平行四边形;
故选A.
2.B
【详解】
如图所示:∵四边形ABCD是菱形,菱形的周长为8,
∴AB=BC=CD=DA=2,∠DAB+∠B=180,
∵AE=1,AE⊥BC,
∴AE=AB,
∴∠B=30,
∴∠DAB=150,
∴∠DAB:∠B=5:1;
故选B.
3.B
【详解】
解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠BAF=45°,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠BAE=90°+60°=150°,AB=AE,
∴∠ABE=∠AEB=(180° 150°)=15°,
∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
故选:B.
4.A
【详解】
解:∵平行四边形ABCD
∴OA+OB=(BD+AC)=9cm
又∵△AOB的周长为13cm,
∴AB=CD=4cm,
又∵CD:DA=2:3,
∴BC=AD=6cm
故选A.
5.B
【详解】
解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;
B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;
C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;
D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.
故选B.
6.C
【详解】
∵四边形的对角线互相平分,
∴此四边形是平行四边形;
又∵对角线相等,
∴此四边形是矩形;
故选C
7.D
【详解】
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∴S1+S3=平行四边形ABCD的面积,
S2+S4=平行四边形ABCD的面积,
∴S1+S3=S2+S4,
故选D.
8.D
【详解】
解:∵E,F,G,H分别是边AD,AB,CB,DC的中点,
∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,
∴EH∥FG,EF=FG,
∴四边形EFGH是平行四边形,
假设AC=BD,
∵EH=AC,EF=BD,
则EF=EH,
∴平行四边形EFGH是菱形,
即只有具备AC=BD即可推出四边形是菱形,
故选:D.
9.D
【详解】
∵四边形ABCD是矩形,
∴∠ABC=90°,CD=AB=6,BC=AD=8,
∴AC==10,
∴BP=AC=5,
∵P是矩形ABCD的对角线AC的中点,E是AD的中点,
∴AE=AD=4,PE是△ACD的中位线,
∴PE=CD=3,
∴四边形ABPE的周长=AB+BP+PE+AE=6+5+3+4=18;
故选D.
10.B
【详解】
A.对角线相等的平行四边形才是矩形,故本选项错误;
B.矩形的对角线相等且互相平分,故本选项正确;
C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;
D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;
故选B.
11.3
【详解】
∵四边形ABCD是菱形
∴AB=BC,且∠B=60°,
∴△ABC是等边三角形,
∴AB=AC=3,
∵四边形ACEF是正方形,
∴AC=EF=3
故答案为3
12.4
【详解】
解:如图,设AC与BD的交点为O,连接PO,
∵四边形ABCD是矩形
∴AO=CO=5=BO=DO,
∴S△DCO=S矩形ABCD=10,
∵S△DCO=S△DPO+S△PCO,
∴10=×DO×PF+×OC×PE
∴20=5PF+5PE
∴PE+PF=4
故答案为4
13.3
【详解】
∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,
∴,,
∴DO=AO=3.
故答案为3.
14.1.
【详解】
如图,过E作EF⊥AD于F,则△AEH是等腰直角三角形,
∵DE平分∠ODA,EO⊥DO,EH⊥DH,
∴OE=HE,
设OE=x,则EH=AH=x,AE=x,AO=x+x,
在Rt△ABO中,
AO2+BO2=AB2,
∴(x+x)2+(x+x)2=(2+)2,
解得x=1(负值已舍去),
∴线段OE的长为1.
故答案为1.
15.8
【详解】
解:∵AF⊥BC,BE⊥AC,D是AB的中点,
∴DE=DF=AB,
∵AB=AC,AF⊥BC,
∴点F是BC的中点,∴BF=FC=3,
∵BE⊥AC,
∴EF=BC=3,
∴△DEF的周长=DE+DF+EF=AB+3=11,
∴AB=8,
故答案为8.
16.
【详解】
如图,过点E作EM∥AB,交AC于点M,
∵四边形ABCD是正方形
∴AD=CD=BC=4,∠ADC=∠DAB=∠DCE=90°,∠ACE=45°,AB∥CD,
∴∠CDE+∠ADE=90°,AC=4
∵DF⊥DE,
∴∠FDA+∠ADE=90°
∴∠CDE=∠FDA,且∠DAF=∠DCE=90°,AD=CD,
∴△ADF≌△CDE(AAS)
∴AF=CE,
∵点E是BC中点,
∴CE=BE=BC=AF,
∵ME∥CD
∴∠DCE=∠MEB=90°,且∠ACB=45°
∴∠CME=∠ACB=45°,
∴ME=CE=BC,
∵ME∥AB,AB∥CD,
∴ME∥AB∥CD,
∴,,,
∴MQ=AQ,AM=CM=2,CP=2MP,
∴MQ=,MP=
∴PQ=MQ+MP=
17.(1)∠APB=90°; (2)△APB的周长是24cm.
【详解】
(1)∵四边形是平行四边形,
∴ ,,,
∴ ,
又∵和分别平分和,
∴ ,
∴;
(2) ∵平分, ,
∴,
∴,同理:,
∴,
在中,,
∴,
∴△的周长.
18.证明见解析
【详解】
∵四边形ABCD是平行四边形,点O是对角线AC、BD的交点,
∴点O是BD的中点.
又∵点E是边CD的中点,
∴OE是△BCD的中位线,
∴OE∥BC,且OE=BC.
又∵CF=BC,
∴OE=CF.
又∵点F在BC的延长线上,
∴OE∥CF,
∴四边形OCFE是平行四边形.
19.1
【详解】
∵AE为△ABC的角平分线,CH⊥AE,
∴△ACF是等腰三角形,
∴AF=AC,
∵AC=3,
∴AF=AC=3,HF=CH,
∵AD为△ABC的中线,
∴DH是△BCF的中位线,
∴DH=BF,
∵AB=5,
∴BF=AB-AF=5-3=2.
∴DH=1.
20.(1)见解析;(2)见解析
【详解】
(1)∵DE是△ABC的中位线,
∴DE∥AB,AB=2DE,AD=CD,
∵EF=DE,
∴DF=2DE,
∴AB=DF,且AB∥DF,
∴四边形ABFD是平行四边形;
(2)∵四边形ABFD是平行四边形,
∴AD=BF,且AD=CD,
∴BF=DC.