10.1.1有限样本空间现随机事件
教学目标:
1.结合具体实例,理解样本点和有限样本空间的含义.
2.理解随机事件与样本点的关系.
教学重、难点:
1.结合具体实例,理解样本点和有限样本空间的含义.
2.理解随机事件与样本点的关系.
教学过程:
1、预习导入:
阅读课本226-228页,填写。
1.随机试验的概念和特点
(1)随机试验:我们把对____的实现和对它的观察称为随机试验,常用字母E来表示.
(2)随机试验的特点:
①试验可以在相同条件下________进行;
②试验的所有可能结果是_______的,并且不止一个;
③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.
2.样本点和样本空间
定义 字母表示
样本点 我们把随机试验E的________称为样本点 用____表示样本点
样本空间 全体样本点的集合称为试验E的样本空间 用____表示样本空间
有限样本空间 如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间 Ω={ω1,ω2,…,ωn}
3.三种事件的定义
随机事件 我们将样本空间Ω的____称为随机事件,简称事件,并把只包含____样本点的事件称为基本事件.随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生
必然事件 Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件
不可能事件 空集 不包含任何样本点,在每次试验中都不会发生,我们称 为不可能事件。
思考1:如何确定试验的样本空间?
思考2:观察随机试验时,其可能出现的结果的数量一定是有限的吗?
2、典型例题:
练一练
思考1:体育彩票摇奖时,将10个质地和大小完全相同、分别标号0,1,2,…,9的球放入摇奖器中,经过充分搅拌后摇出一个球,观察这个球的号码,这个随机试验共有多少个可能结果?如何表示这些结果?
例1.抛掷一枚硬币,观察它落地时哪一面朝上,写出试验的样本空间。
例2 抛掷一枚骰子(touzi),观察它落地时朝上的面的点数,写出试验的样本空间.
例3 抛掷两枚硬币,观察它们落地时朝上的面的情况,写出试验的样本空间
思考1:同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).
(1)写出这个试验的样本空间;
(2)求这个试验的样本点的总数;
(3)“x+y=5”这一事件包含哪几个样本点?“x<3且y>1”呢?
(4)“xy=4”这一事件包含哪几个样本点?“x=y”呢?
思考2.
在体育彩票摇号实验中,摇出“球的号码是奇数”是随机事件吗?摇出“球的号码为3的倍数”是否也是随机事件?如果用集合的形式来表示它们,那么这些集合与样本空间有什么关系?
思考3.
指出下列事件是必然事件,不可能事件,还是随机事件:
(1)某地1月1日刮西北风;
(2)当x是实数时,
(3)手电筒的电池没电,灯泡发亮;
(4)一个电影院某天的上座率超过50%。
(5)如果a>b,那么a一b>0;
(6)从分别标有数字l,2,3,4,5的5张标签中任取一张,得到4号签;
(7)某电话机在1分钟内收到2次呼叫;
(8)随机选取一个实数x,得|x|<0.
例4如图,一个电路中有A,B,C三个电器元件,每个元件可能正常,也可能失效.把这个电路是否为通路看成是一个随机现象,观察这个电路中各元件是否正常.
(1)写出试验的样本空间;
(2)用集合表示下列事件:
M=“恰好两个元件正常”;
N=“电路是通路”;
T=“电路是断路”.
三、巩固练习
1.写出下列各随机试验的样本空间:
(1)采用抽签的方式,随机选择一名同学,并记录其性别;
(2)采用抽签的方式,随机选择一名同学,观察其ABO血型;
(3)随机选择一个有两个小孩的家庭,观察两个孩子的性别;
(4)射击靶3次,观察各次射击中靶或脱靶情况;
(5)射击靶3次,观察中靶的次数.
2.如图,由A,B两个元件分别组成串联电路(图(1))和并联电路(图(2)),观察两个元件正常或失效的情况.
(1)写出试验的样本空间;
(2)对串联电路,写出事件M=“电路是通路”包含的样本点;
(3)对并联电路,写出事件N=“电路是断路”包含的样本点.
3.袋子中有9个大小和质地相同的球,标号为1,2,3,4,5,6,7,8,9,从中随机模出一个球
(1)写出试验的样本空间;
(2)用集合表示事件A=“摸到球的号码小于5”,事件B=“摸到球的号码大于4”,事件C=“孩到球的号码是偶数”
2