三角函数的诱导公式(1)(整理)1

文档属性

名称 三角函数的诱导公式(1)(整理)1
格式 zip
文件大小 81.5KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2013-03-11 13:03:17

图片预览

文档简介

金太阳教育网 www.jtyjy.com
1.3 .1三角函数的诱导公式(1)
一、课题:三角函数的诱导公式(1)
二、教学目标:1.理解正弦、余弦的诱导公式二、三的推导过程;
2.掌握公式二、三,并会正确运用公式进行有关计算、化简;
3.了解、领会把为知问题化归为已知问题的数学思想,提高分析问题、解决问题的能力。
三、教学重、难点:1.诱导公式二、三的推导、记忆及符号的判断;
2.应用诱导公式二、三的推导。
四、教学过程:
(一)复习:
1.利用单位圆表示任意角的正弦值和余弦值;
2.诱导公式一及其用途:

问:由公式一把任意角转化为内的角后,如何进一步求出它的三角函数值?
我们对范围内的角的三角函数值是熟悉的,那么若能把内的角的三角函数值转化为求锐角的三角函数值,则问题将得到解决,这就是数学化归思想。
(二)新课讲解:
1.引入:对于任何一个内的角,以下四种情况有且只有一种成立(其中为锐角):
所以,我们只需研究的同名三角函数的关系即研究了的关系了。
2.诱导公式二:
提问:(1)锐角的终边与的终边位置关系如何?
(2)写出的终边与的终边与单位圆交点的坐标。
(3)任意角与呢?
通过图演示,可以得到:任意与的终边都是关于原点中心对称的。
则有,由正弦函数、余弦函数的定义可知:
, ;
, .
从而,我们得到诱导公式二: ;.
说明:①公式二中的指任意角;
②若是弧度制,即有,;
③公式特点:函数名不变,符号看象限;
④可以导出正切:.
(此公式要使等式两边同时有意义)
3.诱导公式三:
提问:(1)的终边与的终边位置关系如何?从而得出应先研究;
(2)任何角与的终边位置关系如何?
对照诱导公式二的推导过程,由学生自己完成诱导公式三的推导,
即得:诱导公式三:;.
说明:①公式二中的指任意角;
②在角度制和弧度制下,公式都成立;
③公式特点:函数名不变,符号看象限(交代清楚在什么情况下“名不变”,以及符号确定的具体方法);
④可以导出正切:.
4.例题分析:
例1 求下列三角函数值:(1); (2).
分析:先将不是范围内角的三角函数,转化为范围内的角的三角函
数(利用诱导公式一)或先将负角转化为正角然后再用诱导公式化到范围内角
的三角函数的值。
解:(1)(诱导公式一)
(诱导公式二)

(2)(诱导公式三)
(诱导公式一)
(诱导公式二)

方法小结:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤是:
①化负角的三角函数为正角的三角函数;
②化为内的三角函数;
③化为锐角的三角函数。
可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值)。
例2 化简.
解:原式

五、课堂练习:
六、小结:1.简述数学的化归思想;
2.两个诱导公式的推导和记忆;
3.公式二可以将范围内的角的三角函数转化为锐角的三角函数;
4.公式三可以将负角的三角函数转化为正角的三角函数。
七、作业: