高一数学必修三《第1-3章》课件(打包36份)

文档属性

名称 高一数学必修三《第1-3章》课件(打包36份)
格式 zip
文件大小 966.6KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2013-03-11 16:55:15

文档简介

课件22张PPT。 第一章 算法初步
1.1 算法与程序框图
1.1.1 算法的概念高中新课程数学必修③问题提出1.用计算机解二元一次方程组 2.在上述解二元一次方程组的过程中,计算机是按照一定的指令来工作的,其中最基础的数学理论就是算法,本节课我们就来学习: 算法的概念知识探究(一):算法的概念思考1:在初中,对于解二元一次方程组你学过哪些方法? 加减消元法和代入消元法思考2:用加减消元法解二元一次方程组
的具体步骤是什么? ①+②×2,得 5x=1 . ③ 解③,得 . ②-①×2,得 5y=3 . ④ 解④,得 .第一步,第二步,第三步,第四步,第五步, 得到方程组的解为 . ??第一步,①× - ②× ,得
. ③第二步,解③ ,得 . 第三步,②× - ①× ,得
. ④第四步,解④ ,得 . 思考4:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容? 思考5:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.你认为:
(1)这些步骤的个数是有限的还是无限 的?(2)每个步骤是否有明确的计算任务?思考6:有人对哥德巴赫猜想“任何大于4的偶数都能写成两个质数之和”设计了如下操作步骤:第一步,检验6=3+3,
第二步,检验8=3+5,
第三步,检验10=5+5,
……
利用计算机无穷地进行下去!
请问:这是一个算法吗?思考7:根据上述分析,你能归纳出算法的概念吗? 在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法. 知识探究(二):算法的步骤设计思考1:如果让计算机判断7是否为质数,如何设计算法步骤? 第一步,用2除7,得到余数1,所以2不能整除7.第四步,用5除7,得到余数2,所以5不能整除7. 第五步,用6除7,得到余数1,所以6不能整除7. 第二步,用3除7,得到余数1,所以3不能整除7.第三步,用4除7,得到余数3,所以4不能整除7. 因此,7是质数.思考2:如果让计算机判断35是否为质数,如何设计算法步骤? 第一步,用2除35,得到余数1,所以2不能整除35.第二步,用3除35,得到余数2,所以3不能整除35.第三步,用4除35,得到余数3,所以4不能整除35. 第四步,用5除35,得到余数0,所以5能整除35.因此,35不是质数.思考3:整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤? 第一步,用2除89,得到余数1,所以2不能整除89.第二步,用3除89,得到余数2,所以3不能整除89.第三步,用4除89,得到余数1,所以4不能整除89. …… …… …… ……
第八十七步,用88除89,得到余数1,所以88不能 整除89.因此,89是质数.思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.(1)用i表示2~88中的任意一个整数,并从2开始取数;(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i+1替代,再执行同样的操作; (3)这个操作一直进行到i取88为止.你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?用i除89,得到余数r; 令i=2; 若r=0,则89不是质数,结束算法;若r≠0,将i用i+1替代; 判断“i>88”是否成立?若是,则89是质数,结束算法;否则,返回第二步. 第一步, 第四步, 第三步, 第二步, 算法设计:思考5:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计? 第一步,给定一个大于2的整数n; 第二步,令i=2; 第三步,用i除n,得到余数r; 第四步,判断“r=0”是否成立.若是,则n 不是质数,结束算法;否则,将i 的值增加1,仍用i表示; 第五步,判断“i>(n-1)”是否成立,若是, 则n是质数,结束算法;否则,返回 第三步. 理论迁移 例 设函数f(x)的图象是一条连续不断的曲线,写出用“二分法”求方程 f(x)=0的一个近似解的算法. 第一步,取函数f(x),给定精确度d. 第二步,确定区间[a,b],满足f(a)·f(b)<0. 第五步,判断[a,b]的长度是否小于d或f(m)是否等于0. 若是,则m是方程的近似解;否则,返回第三步.第三步,取区间中点 .第四步,若f(a)·f(m)<0,则含零点的区间 为[a,m],否则,含零点的区间为[m,b]. 将新得到的含零点的区间仍记为[a,b];对于方程 ,给定d=0.005.小结作业 算法是建立在解法基础上的操作过程,算法不一定要有运算结果,问题答案可以由计算机解决.设计一个解决某类问题的算法的核心内容是设计算法的步骤,它没有一个固定的模式,但有以下几个基本要求: (1)符合运算规则,计算机能操作;(2)每个步骤都有一个明确的计算任务;(4)步骤个数尽可能少;(5)每个步骤的语言描述要准确、简明.(3)对重复操作步骤作返回处理;作业:
P5练习:1,2.