10.3 频率与概率(精练)(word版含答案解析)

文档属性

名称 10.3 频率与概率(精练)(word版含答案解析)
格式 zip
文件大小 311.5KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-04-26 15:58:31

文档简介

本资料分享自高中数学同步资源大全QQ群483122854 专注收集同步资源期待你的加入与分享
10.3 频率与概率(精练)
【题组一 频率与概率的概念区分】
1.(2021·全国单元测试)下列说法正确的有(  )
①随机事件A的概率是频率的稳定值,频率是概率的近似值.
②一次试验中不同的基本事件不可能同时发生.
③任意事件A发生的概率总满足.
④若事件A的概率为0,则A是不可能事件.
A.0个 B.1个 C.2个 D.3个
【答案】C
【解析】不可能事件的概率为0,但概率为0的事件不一定是不可能事件,如几何概率中“单点”的长度、面积、体积都是0,但不是不可能事件,∴④不对;抛掷一枚骰子出现1点和出现2点是不同的基本事件,在同一次试验中,不可能同时发生,故②正确;任意事件A发生的概率P(A)满足,∴③错误;又①正确.∴选C.
2.(2020·全国高一课时练习)下列叙述随机事件的频率与概率的关系中,说法正确的是( )
A.频率就是概率 B.频率是随机的,与试验次数无关
C.概率是稳定的,与试验次数无关 D.概率是随机的,与试验次数有关
【答案】C
【解析】频率指的是:在相同条件下重复试验下,
事件A出现的次数除以总数,是变化的
概率指的是: 在大量重复进行同一个实验时,
事件A发生的频率总接近于某个常数,
这个常数就是事件A的概率,是不变的
故选:C
3.(多选)(2020·山东省桓台第一中学)下列说法中,正确的是( )
A.频率反映随机事件的频繁程度,概率反映随机事件发生的可能性大小;
B.频率是不能脱离次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;
C.做次随机试验,事件发生次,则事件发生的频率就是事件的概率;
D.频率是概率的近似值,而概率是频率的稳定值.
【答案】ABD
【解析】频率是在一次试验中某一事件出现的次数与试验总数的比值,
随某事件出现的次数而变化
概率指的是某一事件发生的可能程度,是个确定的理论值
故选:ABD
4.(多选)(2021·全国高一课时练习)下列说法正确的是( )
A.随着试验次数的增加,频率一般会越来越接近概率
B.连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀
C.某种福利彩票的中奖概率为,那么买1000张这种彩票一定能中奖
D.某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水
【答案】AB
【解析】对于A,试验次数越多,频率就会稳定在概率的附近,故A正确
对于B,如果骰子均匀,则各点数应该均匀出现,所以根据结果都是出现1点可以认定这枚骰子质地不均匀,故B正确.
对于C,中奖概率为是指买一次彩票,可能中奖的概率为,不是指1000张这种彩票一定能中奖,故C错误.
对于D,“明天本市降水概率为70%”指下雨的可能性为,故D错.
故选:AB.
5.(多选)(2020·全国高一课时练习)下列说法正确的是( )
A.一个人打靶,打了10发子弹,有6发子弹中靶,因此这个人中靶的概率为0.6
B.某地发行福利彩票,其回报率为47%,有个人花了100元钱买彩票,一定会有47元回报
C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同
D.大量试验后,可以用频率近似估计概率.
【答案】CD
【解析】、某人打靶,射击10次,击中6次,那么此人中靶的频率为0.6,故错误;
、买这种彩票是一个随机事件,中奖或者不中奖都有可能,但事先无法预料,故错误;
、根据古典概型的概率公式可知C正确;
、大量试验后,可以用频率近似估计概率,故正确.
故选:CD.
6.(2020·全国高一课时练习)下列说法:
①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小;
②百分率是频率,但不是概率;
③频率是不能脱离试验次数的实验值,而概率是具有确定性的不依赖于试验次数的理论值;
④频率是概率的近似值,概率是频率的稳定值.
其中正确的是______________.
【答案】①③④
【解析】对于①,由频率和概率概念: 频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小.可知①正确;
对于②,概率也可以用百分率表示,故②错误.
对于③,频率与试验次数相关,而概率与试验次数无关,所以③正确;
对于④,对于不同批次的试验,频率不一定相同,但概率相同,因而频率是概率的近似值,概率是频率的稳定值,所以④正确.
由概率和频率的定义中可知①③④正确.
故答案为: ①③④
【题组二 概率的计算】
1.(2020·全国高一课时练习)某地为了整顿电动车道路交通秩序,考虑对电动车闯红灯等违章行为进行处罚,为了更好地了解情况,在某路口骑车人中随机选取了100人进行调查,得到如下数据,其中.
处罚金额x(单位:元) 0 10 20
处罚人数y 50 a b
(1)用表中数据所得频率代替概率,求对骑车人处罚10元与20元的概率的差;
(2)用分层抽样的方法在处罚金额为10元和20元的抽样人群中抽取5人,再从这5人中选取2人参与路口执勤,求这两种受处罚的人中各有一人参与执勤的概率.
【答案】(1);(2).
【解析】(1)由条件可得,解得,所以处罚10元的有30人,处罚20元的有20人.
所以对骑车人处罚10元与20元的概率的差为.
(2)用分层抽样的方法在受处罚的人中抽取5人,则受处罚10元的人中应抽取3人,分别记为a,b,c,
受处罚20元的人中应抽取2人,分别记为A,B,若再从这5人中选2人参与路口执勤,共有10种情况:
,,,,,,,,,,
其中两种受处罚的人中各有一人的情况有6种:,,,,,,
所以两种受处罚的人中各有一人参与执勤的概率为.
2.(2020·全国高一课时练习)2020年新型冠状病毒席卷全球,美国是疫情最严重的国家,截止2020年6月8日美国确诊病例约为200万人,经过随机抽样,从感染人群中抽取1000人进行调查,按照年龄得到如下频数分布表:
年龄(岁)
频数 50 a 320 300 80
(Ⅰ)求a的值及这1000例感染人员的年龄的平均数;(同一组中的数据用该组区间的中点值作代表)
(Ⅱ)用频率估计概率,求感染人群中年龄不小于60岁的概率.
【答案】(Ⅰ),平均数为52.2;(Ⅱ).
【解析】(Ⅰ)由题意知,
∴,
年龄平均数.
(Ⅱ)1000人中年龄不小于60岁的人有380人,
所以年龄不小于60岁的频率为,
用频率估计概率,所以感染人群中年龄不小于60岁的概率为.
3.(2020·全国高一课时练习)某制造商2019年8月份生产了一批乒乓球,随机抽取100个进行检查,测得每个乒乓球的直径(单位:mm),将数据分组如下表:
分组 频数 频率
10
20
50
20
合计 100
(1)请将上表补充完整;
(2)已知标准乒乓球的直径为,试估计这批乒乓球的直径误差不超过的概率.
【答案】(1)表见解析(2)
【解析】(1)
分组 频数 频率
10 0.1
20 0.2
50 0.5
20 0.2
合计 100 1.0
(2)标准尺寸是,若要使误差不超过,则直径落在内.由(1)中表知,直径落在内的频率为,
所以这批乒乓球的直径误差不超过的概率约为.
4.(2020·全国高一课时练习)某水产试验厂进行某种鱼卵的人工孵化,6个试验小组记录了不同的鱼卵数所孵化出的鱼苗数,如下表所示:
鱼卵数 200 600 900 1200 1800 2400
孵化出的鱼苗数 188 548 817 1067 1614 2163
孵化成功的频率 0.940 0.913 0.908 ① 0.897 ②
(1)表中①②对应的频率分别为多少(结果保留三位小数)
(2)估计这种鱼卵孵化成功的概率.
(3)要孵化5000尾鱼苗,大概需要鱼卵多少个(精确到百位)
【答案】(1)(2)0.9(3)
【解析】(1),所以①②对应的频率分别为.
(2)从表中数据可看出,虽然频率都不一样,但随着试验的鱼卵数不断增多,孵化成功的频率稳定在0.9附近,由此可估计该种鱼卵孵化成功的概率为0.9.
(3)大概需要鱼卵(个).
5.(2021·全国高一课时练习)某个制药厂正在测试一种减肥药的疗效,有500名志愿者服用此药,结果如下:
体重变化 体重减轻 体重不变 体重增加
人数 276 144 80
如果另有一人服用此药,估计下列事件发生的概率:
(1)这个人的体重减轻了;
(2)这个人的体重不变;
(3)这个人的体重增加了.
【答案】(1);(2);(3).
【解析】(1)由频率估计概率可得:体重减轻了的概率估计值为;
(2)由频率估计概率可得:体重不变的概率估计值为;
(3)由频率估计概率可得:体重增加了的概率估计值为.
6.(2021·全国高一课时练习)某中学有教职工130人,对他们进行年龄状况和受教育程度的调查,其结果如下:
本科 研究生 合计
35岁以下 50 35 85
35-50岁 20 13 33
50岁以上 10 2 12
从这130名教职工中随机地抽取一人,求下列事件的概率;
(1)具有本科学历;
(2)35岁及以上;
(3)35岁以下且具有研究生学历.
【答案】(1);(2);(3).
【解析】(1)具有本科学历的共有(人),故所求概率为.
(2)35岁及以上的共有(人),故所求概率为.
(3)35岁以下且具有研究生学历的有35人,故所求概率为.
【题组三 生活中的概念】
1.(2021·全国高一课时练习)一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.
在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?
【答案】支持甲对游戏公平性的判断,理由见解析
【解析】:当游戏玩了10次时,甲、乙获胜的频率都为0.5;
当游戏玩了1000次时,甲获胜的频率为0.3,乙获胜的频率为0.7,
根据频率的稳定性,随着试验次数的增加,频率偏离概率很大的可能性会越来越小.相对10次游戏,1000次游戏时的频率接近概率的可能性更大,因此我们更愿意相信1000次时的频率离概率更近.而游戏玩到1000次时,甲、乙获胜的频率分别是0.3和0.7,存在很大差距,所以有理由认为游戏是不公平的.因此,应该支持甲对游戏公平性的判断.
2.(2021·全国高二课时练习)有人说:“掷一枚骰子一次得到的点数是2的概率是,这说明掷一枚骰子6次会出现一次点数是2.”对此说法,同学中出现了两种不同的看法:一些同学认为这种说法是正确的.他们的理由是:因为掷一枚骰子一次得到点数是2的概率是,所以掷一枚骰子6次得到一次点数是2的概率P=×6=1,即“掷一枚骰子6次会出现一次点数是2”是必然事件,一定发生.还有一些同学觉得这种说法是错误的,但是他们却讲不出是什么理由来.你认为这种说法对吗 请说出你的理由.
【答案】见解析
【解析】这种说法是错误的.上述认为说法正确的同学,其计算概率的方法自然也是错误的.
为了弄清这个问题,我们不妨用类比法,即把问题变换一下说法.
原题中所说的问题,类似于“在一个不透明的盒子里放有6个标有数字1,2,3,4,5,6的同样大小的球,从盒中摸一个球恰好摸到2号球的概率是.那么摸6次球是否一定会摸到一次2号球呢 ”
在这个摸球问题中,显然还缺少一个摸球的规则,即每次摸到的球是否需要放回盒子里 显然,如果摸到后不放回,那么摸6次球一定会摸到一次2号球.如果摸到球后需要放回,那么摸6次球就不一定会摸到一次2号球了.
由此看来,我们先要弄清这个摸球问题与上面的掷骰子问题是否完全类同,是否应当有每次摸到的球还要放回盒子里的要求.我们先看看上面掷骰子问题中的规则,在掷骰子问题中,表面上好像没写着什么规则,但实际上却藏有一个自然的规则,即第一次如果掷得某个数(如3),那么后面还允许继续掷得这个相同的数.于是摸球问题要想与掷骰子问题中的规则相同,显然每次摸到的球必须要放回盒子里才妥当.那么摸6次球就不一定会摸到一次2号球了.
3.(2021·全国课时练习)甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)完游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由.
【答案】12,,不公平
【解析】(1)甲乙二人抽到的牌的所有情况(方片4用4’表示,红桃2,红桃3,红桃4分别用2,3,4表示)为:
(2,3)、(2,4)、(2,4’)、(3,2)、(3,4)、(3,4’)、
(4,2)、(4,3)、(4,4’)、(4’,2)、(4’,3)、(4’,4)
共12种不同情况
(没有写全面时:只写出1个不给分,2-4个给1分,5-8个给8分,9-11个给3分)
(2)甲抽到3,乙抽到的牌只能是2,4,4’因此乙抽到的牌的数字大于3的概率为
(3)由甲抽到的牌比乙大的有
(3,2)、(4,2)、(4,3)、(4’,2)、(4’,3)5种,
甲胜的概率,乙获胜的概率为,∵
∴此游戏不公平.
4.(2021·全国高一课时练习)有一个转盘游戏,转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:
A.猜“是奇数”或“是偶数”
B.猜“是4的整数倍数”或“不是4的整数倍数”
C.猜“是大于4的数”或“不是大于4的数”
请回答下列问题:
(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜 为什么
(2)为了保证游戏的公平性,你认为应制定哪种猜数方案 为什么
(3)请你设计一种其他的猜数方案,并保证游戏的公平性.
【答案】(1) 应选方案B ,猜“不是4的整数倍数”;(2) 应当选择方案A;
(3) 可以设计为:猜“是大于5的数”或“不是大于5的数”
【解析】 (1)如题图,方案A中“是奇数”或“是偶数”的概率均为=0.5;方案B中“不是4的整数倍数”的概率为=0.8,“是4的整数倍数”的概率为=0.2;方案C中“是大于4的数”的概率为=0.6,“不是大于4的数”的概率为=0.4.乙为了尽可能获胜,应选方案B,猜“不是4的整数倍数”.
(2)为了保证游戏的公平性,应当选择方案A.因为方案A猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.
(3)可以设计为:猜“是大于5的数”或“不是大于5的数”,此方案也可以保证游戏的公平性.
5.(2020·全国课时练习)有人说:“掷一枚骰子一次得到的点数是2的概率是,这说明掷一枚骰子6次会出现一次点数是2.”对此说法,同学中出现了两种不同的看法:一些同学认为这种说法是正确的.他们的理由是:因为掷一枚骰子一次得到点数是2的概率是,所以掷一枚骰子6次得到一次点数是2的概率P=×6=1,即“掷一枚骰子6次会出现一次点数是2”是必然事件,一定发生.还有一些同学觉得这种说法是错误的,但是他们却讲不出是什么理由来.你认为这种说法对吗 请说出你的理由.
【答案】见解析
【解析】这种说法是错误的.上述认为说法正确的同学,其计算概率的方法自然也是错误的.
为了弄清这个问题,我们不妨用类比法,即把问题变换一下说法.
原题中所说的问题,类似于“在一个不透明的盒子里放有6个标有数字1,2,3,4,5,6的同样大小的球,从盒中摸一个球恰好摸到2号球的概率是.那么摸6次球是否一定会摸到一次2号球呢 ”
在这个摸球问题中,显然还缺少一个摸球的规则,即每次摸到的球是否需要放回盒子里 显然,如果摸到后不放回,那么摸6次球一定会摸到一次2号球.如果摸到球后需要放回,那么摸6次球就不一定会摸到一次2号球了.
由此看来,我们先要弄清这个摸球问题与上面的掷骰子问题是否完全类同,是否应当有每次摸到的球还要放回盒子里的要求.我们先看看上面掷骰子问题中的规则,在掷骰子问题中,表面上好像没写着什么规则,但实际上却藏有一个自然的规则,即第一次如果掷得某个数(如3),那么后面还允许继续掷得这个相同的数.于是摸球问题要想与掷骰子问题中的规则相同,显然每次摸到的球必须要放回盒子里才妥当.那么摸6次球就不一定会摸到一次2号球了.
【题组四 随机模拟】
1.(2021·河南)农历正月初一是春节,俗称“过年”,是我国最隆重、最热闹的传统节日.家家户户张贴春联,欢度春节,其中“福”字是必不可少的方形春联.如图,该方形春联为边长是的正方形,为了估算“福”字的面积,随机在正方形内撒100颗大豆,假设大豆落在正方形内每个点的概率相同,如果落在“福”字外的有65颗,则“福”字的面积约为( )
A. B. C. D.
【答案】B
【解析】设“福”字的面积为,
根据几何概型可知,解得.故选:B.
2.(2020·全国高一课时练习)袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:
由此可以估计,恰好抽取三次就停止的概率为( )
A. B. C. D.
【答案】C
【解析】由随机产生的随机数可知恰好抽取三次就停止的有,共4组随机数,
恰好抽取三次就停止的概率约为,故选C.
3.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:
232 321 230 023 123 021 132 220 001
231 130 133 231 013 320 122 103 233
由此可以估计,恰好第三次就停止的概率为( )
A. B. C. D.
【答案】B
【解析】由题意得18组随机数中,巧好第三次就停止的数为023,123,132,故恰好第三次就停止的概率为,故选:B.
4.(2020·全国高一课时练习)下列不能产生随机数的是 (  )
A.抛掷骰子试验 B.抛硬币
C.计算器 D.正方体的六个面上分别写有,抛掷该正方体
【答案】D
【解析】D项中,出现的概率为,出现1,3,4,5的概率均是,则D项不能产生随机数,故选D.
联系QQ309000116加入百度网盘群2500G一线老师必备资料一键转存,自动更新,一劳永逸本资料分享自高中数学同步资源大全QQ群483122854 专注收集同步资源期待你的加入与分享
10.3 频率与概率(精练)
【题组一 频率与概率的概念区分】
1.(2021·全国单元测试)下列说法正确的有(  )
①随机事件A的概率是频率的稳定值,频率是概率的近似值.
②一次试验中不同的基本事件不可能同时发生.
③任意事件A发生的概率总满足.
④若事件A的概率为0,则A是不可能事件.
A.0个 B.1个 C.2个 D.3个
2.(2020·全国高一课时练习)下列叙述随机事件的频率与概率的关系中,说法正确的是( )
A.频率就是概率 B.频率是随机的,与试验次数无关
C.概率是稳定的,与试验次数无关 D.概率是随机的,与试验次数有关
3.(多选)(2020·山东省桓台第一中学)下列说法中,正确的是( )
A.频率反映随机事件的频繁程度,概率反映随机事件发生的可能性大小;
B.频率是不能脱离次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;
C.做次随机试验,事件发生次,则事件发生的频率就是事件的概率;
D.频率是概率的近似值,而概率是频率的稳定值.
4.(多选)(2021·全国高一课时练习)下列说法正确的是( )
A.随着试验次数的增加,频率一般会越来越接近概率
B.连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀
C.某种福利彩票的中奖概率为,那么买1000张这种彩票一定能中奖
D.某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水
5.(多选)(2020·全国高一课时练习)下列说法正确的是( )
A.一个人打靶,打了10发子弹,有6发子弹中靶,因此这个人中靶的概率为0.6
B.某地发行福利彩票,其回报率为47%,有个人花了100元钱买彩票,一定会有47元回报
C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同
D.大量试验后,可以用频率近似估计概率.
6.(2020·全国高一课时练习)下列说法:
①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小;
②百分率是频率,但不是概率;
③频率是不能脱离试验次数的实验值,而概率是具有确定性的不依赖于试验次数的理论值;
④频率是概率的近似值,概率是频率的稳定值.
其中正确的是______________.
【题组二 概率的计算】
1.(2020·全国高一课时练习)某地为了整顿电动车道路交通秩序,考虑对电动车闯红灯等违章行为进行处罚,为了更好地了解情况,在某路口骑车人中随机选取了100人进行调查,得到如下数据,其中.
处罚金额x(单位:元) 0 10 20
处罚人数y 50 a b
(1)用表中数据所得频率代替概率,求对骑车人处罚10元与20元的概率的差;
(2)用分层抽样的方法在处罚金额为10元和20元的抽样人群中抽取5人,再从这5人中选取2人参与路口执勤,求这两种受处罚的人中各有一人参与执勤的概率.
2.(2020·全国高一课时练习)2020年新型冠状病毒席卷全球,美国是疫情最严重的国家,截止2020年6月8日美国确诊病例约为200万人,经过随机抽样,从感染人群中抽取1000人进行调查,按照年龄得到如下频数分布表:
年龄(岁)
频数 50 a 320 300 80
(Ⅰ)求a的值及这1000例感染人员的年龄的平均数;(同一组中的数据用该组区间的中点值作代表)
(Ⅱ)用频率估计概率,求感染人群中年龄不小于60岁的概率.
3.(2020·全国高一课时练习)某制造商2019年8月份生产了一批乒乓球,随机抽取100个进行检查,测得每个乒乓球的直径(单位:mm),将数据分组如下表:
分组 频数 频率
10
20
50
20
合计 100
(1)请将上表补充完整;
(2)已知标准乒乓球的直径为,试估计这批乒乓球的直径误差不超过的概率.
4.(2020·全国高一课时练习)某水产试验厂进行某种鱼卵的人工孵化,6个试验小组记录了不同的鱼卵数所孵化出的鱼苗数,如下表所示:
鱼卵数 200 600 900 1200 1800 2400
孵化出的鱼苗数 188 548 817 1067 1614 2163
孵化成功的频率 0.940 0.913 0.908 ① 0.897 ②
(1)表中①②对应的频率分别为多少(结果保留三位小数)
(2)估计这种鱼卵孵化成功的概率.
(3)要孵化5000尾鱼苗,大概需要鱼卵多少个(精确到百位)
5.(2021·全国高一课时练习)某个制药厂正在测试一种减肥药的疗效,有500名志愿者服用此药,结果如下:
体重变化 体重减轻 体重不变 体重增加
人数 276 144 80
如果另有一人服用此药,估计下列事件发生的概率:
(1)这个人的体重减轻了;
(2)这个人的体重不变;
(3)这个人的体重增加了.
6.(2021·全国高一课时练习)某中学有教职工130人,对他们进行年龄状况和受教育程度的调查,其结果如下:
本科 研究生 合计
35岁以下 50 35 85
35-50岁 20 13 33
50岁以上 10 2 12
从这130名教职工中随机地抽取一人,求下列事件的概率;
(1)具有本科学历;
(2)35岁及以上;
(3)35岁以下且具有研究生学历.
【题组三 生活中的概念】
1.(2021·全国高一课时练习)一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.
在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?
2.(2021·全国高二课时练习)有人说:“掷一枚骰子一次得到的点数是2的概率是,这说明掷一枚骰子6次会出现一次点数是2.”对此说法,同学中出现了两种不同的看法:一些同学认为这种说法是正确的.他们的理由是:因为掷一枚骰子一次得到点数是2的概率是,所以掷一枚骰子6次得到一次点数是2的概率P=×6=1,即“掷一枚骰子6次会出现一次点数是2”是必然事件,一定发生.还有一些同学觉得这种说法是错误的,但是他们却讲不出是什么理由来.你认为这种说法对吗 请说出你的理由.
3.(2021·全国课时练习)甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)完游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由.
4.(2021·全国高一课时练习)有一个转盘游戏,转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:
A.猜“是奇数”或“是偶数”
B.猜“是4的整数倍数”或“不是4的整数倍数”
C.猜“是大于4的数”或“不是大于4的数”
请回答下列问题:
(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜 为什么
(2)为了保证游戏的公平性,你认为应制定哪种猜数方案 为什么
(3)请你设计一种其他的猜数方案,并保证游戏的公平性.
5.(2020·全国课时练习)有人说:“掷一枚骰子一次得到的点数是2的概率是,这说明掷一枚骰子6次会出现一次点数是2.”对此说法,同学中出现了两种不同的看法:一些同学认为这种说法是正确的.他们的理由是:因为掷一枚骰子一次得到点数是2的概率是,所以掷一枚骰子6次得到一次点数是2的概率P=×6=1,即“掷一枚骰子6次会出现一次点数是2”是必然事件,一定发生.还有一些同学觉得这种说法是错误的,但是他们却讲不出是什么理由来.你认为这种说法对吗 请说出你的理由.
【题组四 随机模拟】
1.(2021·河南)农历正月初一是春节,俗称“过年”,是我国最隆重、最热闹的传统节日.家家户户张贴春联,欢度春节,其中“福”字是必不可少的方形春联.如图,该方形春联为边长是的正方形,为了估算“福”字的面积,随机在正方形内撒100颗大豆,假设大豆落在正方形内每个点的概率相同,如果落在“福”字外的有65颗,则“福”字的面积约为( )
A. B. C. D.
2.(2020·全国高一课时练习)袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:
由此可以估计,恰好抽取三次就停止的概率为( )
A. B. C. D.
3.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:
232 321 230 023 123 021 132 220 001
231 130 133 231 013 320 122 103 233
由此可以估计,恰好第三次就停止的概率为( )
A. B. C. D.
4.(2020·全国高一课时练习)下列不能产生随机数的是 (  )
A.抛掷骰子试验 B.抛硬币
C.计算器 D.正方体的六个面上分别写有,抛掷该正方体
联系QQ309000116加入百度网盘群2500G一线老师必备资料一键转存,自动更新,一劳永逸