9.2.1总体取值规律的估计
导学案
【学习目标】
1.学会用频率分布直方图表示样本数据
2.能通过频率分布直方图对数据做出总体统计
【自主学习】
知识点1 频率分布直方图的绘制
(1)求极差,即一组数据中的 与 的差.
(2)决定 与 .组距与组数的确定没有固定的标准,一般来说,数据分组的组数与数据的个数有关,数据的个数越多,所分组数越多,当样本量不超过100时,
常分为 组.
(3)将数据 .
(4)列 ,计算各小组的频率,作出频率分布表.
(5)画频率分布直方图.其中横轴表示样本数据,纵轴表示 的比.
知识点2 频率分布直方图的意义
频率分布直方图中,各小长方形的面积表示相应各组的 ,
各小长方形的面积的总和等于 .
【合作探究】
探究一 频率分布概念的理【答案】
【例1】例1 关于频率分布直方图,下列说法正确的是( )
A.直方图中小长方形的高表示取某数的频率
B.直方图中小长方形的高表示该组上的个体在样本中出现的频率
C.直方图中小长方形的高表示该组上的个体在样本中出现的频数与组距的比值
D.直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值
归纳总结:
【练习1】一个容量为20的样本数据,将其分组如下表:
分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70]
频数 2 3 4 5 4 2
则样本在区间(-∞,50)上的频率为( )
A.0.5 B.0.25 C.0.6 D.0.7
探究二 频率分布直方图的绘制
【例2】某中学从高一年级随机抽取50名学生进行智力测验,其得分如下(单位:分):
48 64 52 86 71 48 64 41 86 79
71 68 82 84 68 64 62 68 81 57
90 52 74 73 56 78 47 66 55 64
56 88 69 40 73 97 68 56 67 59
70 52 79 44 55 69 62 58 32 58
根据上面的数据,回答下列问题:
(1) 这次测验成绩的最高分和最低分分别是多少?
(2)将区间[30,100]平均分成7个小区间,试列出这50名学生智力测验成绩的频率分布表,进而画出频率分布直方图;
(3)分析频率分布直方图,你能得出什么结论?
归纳总结:
【练习2】如表所示给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).
区间界限 [122,126) [126,130) [130,134) [134,138) [138,142)
人数 5 8 10 22 33
区间界限 [142,146) [146,150) [150,154) [154,158]
人数 20 11 6 5
(1)列出样本频率分布表;
(2)画出频率分布直方图;
(3)估计身高小于134 cm的人数占总人数的百分比.
探究三 频率分布直方图的应用
【例3】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
组号 分组 频数
1 [0,2) 6
2 [2,4) 8
3 [4,6) 17
4 [6,8) 22
5 [8,10) 25
6 [10,12) 12
7 [12,14) 6
8 [14,16) 2
9 [16,18] 2
合计 100
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).
归纳总结:
【练习3】某学校组织学生参加数学测试,某班学生的成绩频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生总人数是( )
A.45 B.50 C.55 D.60
课后作业
A组 基础题
一、选择题
1.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为( )
A.20 B.30 C.40 D.50
2.已知样本数据:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的是( )
A.[5.5,7.5) B.[7.5,9.5)
C.[9.5,11.5) D.[11.5,13.5]
3.从一堆苹果中任取10个,称得它们的质量如下(单位:克):125,120,122,105,130,114,116,95,120,134,则样本数据落在[114.5,124.5)内的频率为( )
A.0.2 B.0.3
C.0.4 D.0.5
4.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8,其累计频率为0.4,则这个样本量是( )
A.20 B.40
C.70 D.80
5.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为( )
A.20 B.30
C.40 D.50
二、填空题
6.如图是将高三某班60名学生参加某次数学模拟考试所得的成绩(成绩均为整数)整理后画出的频率分布直方图,则此班的优秀(120分及以上为优秀)率为________.
7.根据国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阈值与检验》(GB19522~2004)中规定车辆驾驶人员血液酒精含量:“饮酒驾车”的临界值为20 mg/100 mL;“醉酒驾车”的临界值为80 mg/100 mL.某地区交通执法部门统计了5月份的执法记录数据(每个分组包括最小值不包括最大值):
血液酒精含量 (单位:mg /100 mL) 0~20 20~40 40~60 60~80 80~100
人数 180 11 5 2 2
根据上述表格,可估计该地区全年“饮酒驾车”发生的频率等于________.
8.一个频数分布表(样本量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)内的频率为0.6,则估计样本在[40,50),[50,60)内的数据个数之和是 .
三、【答案】答题
9.暑假期间某班为了增强学生的社会实践能力,把该班学生分成四个小组到一果园帮果农测量果树的产量,某小组来到一片种植苹果的山地,他们随机选取20株作为样本测量每一株的果实产量(单位:kg),获得的数据按照区间[40,45),[45,50),[50,55),[55,60]进行分组,得到如下频率分布表:
分组 [40,45) [45,50) [50,55) [55,60] 合计
频率 0.3 a 0.1 b c
已知样本中产量在区间[45,50)内的株数是产量在区间[50,60]内的株数的倍.
(1)分别求出a,b,c的值;
(2)作出频率分布直方图.
10.如图所示是总体的一个样本频率分布直方图,且在[15,18)内的频数为8.
(1)求样本在[15,18)内的频率;
(2)求样本量;
(3)若在[12,15)内的小矩形面积为0.06,求在[18,33)内的频数.
B组 能力提升
一、【答案】答题
3 从某校高三学生中抽取50名参加数学竞赛,成绩分组(单位:分)及各组的频数如下:
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.
(1)列出样本的频率分布表(含累积频率);
(2)画出频率分布直方图;
(3)估计成绩在[60,90)分的学生比例.
2 一个农技站为了考察某种大麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):
6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6
5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8
6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5
6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4
6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.4
6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6
5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0
5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7
5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0
6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3
根据上面的数据列出频率分布表、绘制出频率分布直方图,并估计在这块试验田里长度在5.75~6.35 cm之间的麦穗所占的百分比.9.2.1总体取值规律的估计
导学案
【学习目标】
1.学会用频率分布直方图表示样本数据
2.能通过频率分布直方图对数据做出总体统计
【自主学习】
知识点1 频率分布直方图的绘制
(1)求极差,即一组数据中的最大值与最小值的差.
(2)决定组距与组数.组距与组数的确定没有固定的标准,一般来说,数据分组的组数与数据的个数有关,数据的个数越多,所分组数越多,当样本量不超过100时,常分为5~12组.
(3)将数据分组.
(4)列频率分布表,计算各小组的频率,作出频率分布表.
(5)画频率分布直方图.其中横轴表示样本数据,纵轴表示频率与组距的比.
知识点2 频率分布直方图的意义
频率分布直方图中,各小长方形的面积表示相应各组的频率,
各小长方形的面积的总和等于1.
【合作探究】
探究一 频率分布概念的理【答案】
【例1】例1 关于频率分布直方图,下列说法正确的是( )
A.直方图中小长方形的高表示取某数的频率
B.直方图中小长方形的高表示该组上的个体在样本中出现的频率
C.直方图中小长方形的高表示该组上的个体在样本中出现的频数与组距的比值
D.直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值
【答案】 D
【答案】析 注意频率分布直方图和条形图的区别,在直方图中,纵轴(小长方形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上的小长方形的面积.
归纳总结:由频率的定义不难得出,各组数据的频率之和为1,因为各组数据的个数之和为样本容量.在列频率分布表时,可以利用这种方法检查是否有数据的丢失.
【练习1】一个容量为20的样本数据,将其分组如下表:
分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70]
频数 2 3 4 5 4 2
则样本在区间(-∞,50)上的频率为( )
A.0.5 B.0.25 C.0.6 D.0.7
【答案】 D
【答案】析 样本在区间(-∞,50)上的频率为==0.7.
探究二 频率分布直方图的绘制
【例2】某中学从高一年级随机抽取50名学生进行智力测验,其得分如下(单位:分):
48 64 52 86 71 48 64 41 86 79
71 68 82 84 68 64 62 68 81 57
90 52 74 73 56 78 47 66 55 64
56 88 69 40 73 97 68 56 67 59
70 52 79 44 55 69 62 58 32 58
根据上面的数据,回答下列问题:
(1) 这次测验成绩的最高分和最低分分别是多少?
(2)将区间[30,100]平均分成7个小区间,试列出这50名学生智力测验成绩的频率分布表,进而画出频率分布直方图;
(3)分析频率分布直方图,你能得出什么结论?
【答案】 (1)这次测验成绩的最低分是32分,最高分是97分.
(2)根据题意,列出样本的频率分布表如下:
分组 频数 频率
[30,40) 1 0.02
[40,50) 6 0.12
[50,60) 12 0.24
[60,70) 14 0.28
[70,80) 9 0.18
[80,90) 6 0.12
[90,100] 2 0.04
合计 50 1.00
频率分布直方图如图所示.
(3)从频率分布直方图可以看出,这50名学生的智力测验成绩大体上呈两头小、中间大,左右基本对称,说明这50名学生中智力特别好或特别差的占极少数,而智力一般的占多数,这是一种最常见的分布.
归纳总结:频率分布表和频率分布直方图之间的密切关系是显然的,它们只不过是相同的数据的两种不同的表达方式,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.
【练习2】如表所示给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).
区间界限 [122,126) [126,130) [130,134) [134,138) [138,142)
人数 5 8 10 22 33
区间界限 [142,146) [146,150) [150,154) [154,158]
人数 20 11 6 5
(1)列出样本频率分布表;
(2)画出频率分布直方图;
(3)估计身高小于134 cm的人数占总人数的百分比.
【答案】 (1)样本频率分布表如下:
分组 频数 频率
[122,126) 5 0.04
[126,130) 8 0.07
[130,134) 10 0.08
[134,138) 22 0.18
[138,142) 33 0.28
[142,146) 20 0.17
[146,150) 11 0.09
[150,154) 6 0.05
[154,158] 5 0.04
合计 120 1
(2)其频率分布直方图如下:
(3)由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.
探究三 频率分布直方图的应用
【例3】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
组号 分组 频数
1 [0,2) 6
2 [2,4) 8
3 [4,6) 17
4 [6,8) 22
5 [8,10) 25
6 [10,12) 12
7 [12,14) 6
8 [14,16) 2
9 [16,18] 2
合计 100
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).
【答案】 (1)根据频数分布表知,100名学生中一周课外阅读时间不少于12小时的学生共有6+2+2=10(名),
所以样本中的学生一周课外阅读时间少于12小时的频率是1-=0.9.
故从该校随机选取一名学生,估计其该周课外阅读时间少于12小时的概率为0.9.
(2)课外阅读时间落在组[4,6)内的有17人,频率为0.17,所以a===0.085.课外阅读时间落在组[8,10)内的有25人,频率为0.25,所以b===0.125.
(3)样本中的100名学生该周课外阅读时间的平均数在第4组.
归纳总结:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.
【练习3】某学校组织学生参加数学测试,某班学生的成绩频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生总人数是( )
A.45 B.50 C.55 D.60
【答案】 B
【答案】析 结合频率分布直方图,得分低于60分的人数占总人数的频率为20×(0.005+0.01)=0.30,所以总人数为=50,故选B.
课后作业
A组 基础题
一、选择题
1.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为( )
A.20 B.30 C.40 D.50
【答案】 B
【答案】析 样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.
2.已知样本数据:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的是( )
A.[5.5,7.5) B.[7.5,9.5)
C.[9.5,11.5) D.[11.5,13.5]
【答案】 D
【答案】析 列出频率分布表,依次对照就可以找到【答案】,频率分布表如下:
分组 频数 频率
[5.5,7.5) 2 0.1
[7.5,9.5) 6 0.3
[9.5,11.5) 8 0.4
[11.5,13.5] 4 0.2
合计 20 1.0
从表中可以看出频率为0.2的是[11.5,13.5],故选D.
3.从一堆苹果中任取10个,称得它们的质量如下(单位:克):125,120,122,105,130,114,116,95,120,134,则样本数据落在[114.5,124.5)内的频率为( )
A.0.2 B.0.3
C.0.4 D.0.5
【答案】C
【答案】析:在125,120,122,105,130,114,116,95,120,134这10个数字中,落在[114.5,124.5)内的有116,120,120,122,共4个,∴样本数据在[114.5,124.5)内的频率为0.4.故选C.
4.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8,其累计频率为0.4,则这个样本量是( )
A.20 B.40
C.70 D.80
【答案】A
【答案】析:由已知不超过70分的人数为8,累计频率为0.4,则这个样本量n==20.故选A.
5.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为( )
A.20 B.30
C.40 D.50
【答案】B
【答案】析:样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.
二、填空题
6.如图是将高三某班60名学生参加某次数学模拟考试所得的成绩(成绩均为整数)整理后画出的频率分布直方图,则此班的优秀(120分及以上为优秀)率为________.
【答案】 30%
【答案】析 优秀率为10×(0.022 5+0.005+0.002 5)=0.3=30%.
7.根据国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阈值与检验》(GB19522~2004)中规定车辆驾驶人员血液酒精含量:“饮酒驾车”的临界值为20 mg/100 mL;“醉酒驾车”的临界值为80 mg/100 mL.某地区交通执法部门统计了5月份的执法记录数据(每个分组包括最小值不包括最大值):
血液酒精含量 (单位:mg /100 mL) 0~20 20~40 40~60 60~80 80~100
人数 180 11 5 2 2
根据上述表格,可估计该地区全年“饮酒驾车”发生的频率等于________.
【答案】 0.09
【答案】析 5月份“饮酒驾车”发生的频率等于=0.09.可估计全年“饮酒驾车”发生的频率为0.09.
8.一个频数分布表(样本量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)内的频率为0.6,则估计样本在[40,50),[50,60)内的数据个数之和是 .
【答案】21
【答案】析:根据题意,设分布在[40,50),[50,60)内的数据个数分别为x,y.
∵样本中数据在[20,60)内的频率为0.6,样本量为50,
∴=0.6,【答案】得x+y=21.
即样本在[40,50),[50,60)内的数据个数之和为21.
三、【答案】答题
9.暑假期间某班为了增强学生的社会实践能力,把该班学生分成四个小组到一果园帮果农测量果树的产量,某小组来到一片种植苹果的山地,他们随机选取20株作为样本测量每一株的果实产量(单位:kg),获得的数据按照区间[40,45),[45,50),[50,55),[55,60]进行分组,得到如下频率分布表:
分组 [40,45) [45,50) [50,55) [55,60] 合计
频率 0.3 a 0.1 b c
已知样本中产量在区间[45,50)内的株数是产量在区间[50,60]内的株数的倍.
(1)分别求出a,b,c的值;
(2)作出频率分布直方图.
【答案】 (1)易得c=1.0.
由题意得
∴a=0.4,b=0.2.
(2)根据频率分布表画出频率分布直方图,如图所示.
10.如图所示是总体的一个样本频率分布直方图,且在[15,18)内的频数为8.
(1)求样本在[15,18)内的频率;
(2)求样本量;
(3)若在[12,15)内的小矩形面积为0.06,求在[18,33)内的频数.
【答案】:由题中样本频率分布直方图可知组距为3.
(1)由题中样本频率分布直方图得样本在[15,18)内的频率等于×3=.
(2)∵样本在[15,18)内频数为8,由(1)可知,样本量为=8×=50.
(3)∵在[12,15)内的小矩形面积为0.06,故样本在[12,15)内的频率为0.06,故样本在[15,33)内的频数为50×(1-0.06)=47,又在[15,18)内频数为8,故在[18,33)内的频数为47-8=39.
B组 能力提升
一、【答案】答题
3 从某校高三学生中抽取50名参加数学竞赛,成绩分组(单位:分)及各组的频数如下:
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.
(1)列出样本的频率分布表(含累积频率);
(2)画出频率分布直方图;
(3)估计成绩在[60,90)分的学生比例.
【答案】 (1)频率分布表如下:
成绩分组 频数 频率 累积频率
[40,50) 2 0.04 0.04
[50,60) 3 0.06 0.1
[60,70) 10 0.2 0.3
[70,80) 15 0.3 0.6
[80,90) 12 0.24 0.84
[90,100] 8 0.16 1.00
合计 50 1.00
(2)频率分布直方图如图所示.
(3)成绩在[60,90)分的学生比例,即学生成绩在[60,90)分的频率0.2+0.3+0.24=0.74=74%.所以估计成绩在[60,90)分的学生比例为74%.
2 一个农技站为了考察某种大麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):
6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6
5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8
6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5
6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4
6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.4
6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6
5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0
5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7
5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0
6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3
根据上面的数据列出频率分布表、绘制出频率分布直方图,并估计在这块试验田里长度在5.75~6.35 cm之间的麦穗所占的百分比.
【答案】 (1)计算极差:7.4-4.0=3.4;
(2)决定组距与组数:
若取组距为0.3,因为≈11.3,需分为12组,组数合适,所以取组距为0.3,组数为12;
(3)决定分点:
使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55;
(4)列频率分布表:
分组 频数 频率
[3.95,4.25) 1 0.01
[4.25,4.55) 1 0.01
[4.55,4.85) 2 0.02
[4.85,5.15) 5 0.05
[5.15,5.45) 11 0.11
[5.45,5.75) 15 0.15
[5.75,6.05) 28 0.28
[6.05,6.35) 13 0.13
[6.35,6.65) 11 0.11
[6.65,6.95) 10 0.10
[6.95,7.25) 2 0.02
[7.25,7.55] 1 0.01
合计 100 1.00
(5)绘制频率分布直方图如图.
从表中看到,样本数据落在5.75~6.35之间的频率是0.28+0.13=0.41,于是可以估计,在这块试验田里长度在5.75~6.35 cm之间的麦穗约占41%.