正比例
教学内容:西师版教材43页例1、练习十二1、2题。
教学目标:
1、 结合具体情境认识成正比例的量,理解正比例的意义。
2、 能根据正比例的意义,判断两种量是否成正比例关系。
3、 经历正比例关系有关知识的构建过程,培养学生的归纳概括能力,感悟对应思想。
4、 感受正比例关系在生活中的广泛应用。
教学重点:结合具体情境认识成正比例的量,理解正比例的意义。
教学难点:根据正比例的意义,判断两种量是否成正比例关系。
教学过程:
一、引入课题
前面我们已经认识过比例,今天我们要研究正比例(板书课题:正比例)。看到这个题目,你想知道关于正比例的哪些知识呢?
1、 抽生回答。
2、 根据回答板书:意义、如何判断。
二、新授
同学们想知道的还真不少,今天我们主要研究正比例的意义和如何判断。
1、 出示张阿姨水费收缴情况统计表。
居委会的张阿姨负责小区的水费收缴工作,下面是她统计的某单元6户人家的用水情况。
①、从统计表中你获取了哪些数学信息?
②、抽生回答,注意培培养学生表达的完整性。
2、 出示小明乘车旅行情况统计表
请看,这是小明在乘车旅行途中,根据汽车仪表盘,记录了如下数据。
①、从统计表中你又获取了哪些数学信息?
②、抽生回答,注意培培养学生表达的完整性。
3、 自主分析、合作研究
数学源于生活,下面就请同学们利用这两个生活实例开始我们今天的分组探索之旅吧!
①、先请同学们独自完成手中的题单。左边这两个大组完成题单1,右边的两在组完成题单2。
②、再在小组内交流自己的想法。
③、教师巡视指导。
4、 汇报交流
第一个问题:(1)、表中有( )和( )两种量。分别抽生回答,并板书水费、用水量、路程和时间。
第二个问题:(2)、说说表中两个量是怎样变化的。
①、根据学生对表1情况的回答,用同色箭头表示变化情况,并介绍像这样一种量的变化引起另一种量也随着变化,课件出示相关联的量的含义,这时我们可以说水费和用水量是相关联的量。板书相关联的量。
②、表2中路程和时间也是相关联的量吗?为什么?抽生回答。
③、说一说以下的两种量是相关联的两种量吗?为什么?
订阅 中国少年报 的份数和钱数。
圆的周长和半径。
甲地到乙地,已行路程和剩下的路程。
第三个问题:(3)、任意写出三个相对应数的比,并求出比值。
①、抽生回答,根据生的回答,板书:= =……=3.5。
②、从这些比值中你发现了什么?(引导学生发现相对应水费和用水量的比值都相等,也就是每立方米的水费价格都是3.5元。)
③、在表2中的路程和时间也具有这样的规律吗?根据学生的回答板书:==……=80。(引导学生发现表中相对应的路程和时间的比值都相等,也就是每时所行的路程都是80千米。)
第四问:(4)、比值实际上表示什么,请用式子表示它们的关系。从具体实例抽象出数量间的关系。
①、根据学生对表1的情况回答板书单价,通过刚才的计算小结出单价一定并板书。同时课件展示数量关系。
②、根据学生对表2的情况回答板书速度,通过刚才的计算小结出速度一定并板书。同时课件展示数量关系。
第五问:根据发现填表,规律的应用。抽生填表并说一说你是怎样算出来的。
5、 对比小结正比例的意义
我们已对这两个生活中的实例进行了细致地研究,现在请同学们对比这两个实例,你有什么发现?
①、同桌说一说你的发现。
②、引导学生说出表中都有两种相关联的量,并且相对应的比的比值相等。
③、研究到这里,你们知道什么是正比例了吗?引导学生小结,大屏幕出示概念全班齐读。重点关注哪些词语重要。
④、根据概念,引导学生用完整的语言描述水费和用水量以及路程和时间的关系。
三、巩固练习:
1、完成教材46页练习十二第一题
①、独立判断表中的两个量是否成正比例。
②、反馈交流时,追问学生的判断理由。(引导学生从两方面进行判断,一是看两个量是否相关联,二是看相对应得数比值是否一定。)
③、注意引导学生完整的表达。
2、完成教材46页练习十二第二题。
①、请学生独立判断下列说法是否正确,并说明理由。
②、教师巡视帮助后进生。
③、反馈交流时,说清自己的判断理由,并配合课件演示。
3、完成教材45页课堂活动第1题
生活中除了刚才那些成正比例的量,还有吗 自己先找一找,再同方说一说。全班交流时说清自己的理由。
四、全课小结
1、通过今天的学习,你有什么收获呢?
2、三角形的面积一定,底和高又是一种什么关系呢?希望同学们课后继续探索。
五、板书设计:
正比例
(两种量 关系)
相关联的量 =单价(一定)
= =……=3.5
相关联的量 =速度(一定)
==……=80
相关联的量 对应比值一定 正比例关系