第2课时 积的乘方
知识点 1 积的乘方
1.计算(2y)2的结果是 ( )
A.2y B.4y2 C.2y2 D.4y
2.计算(-2a)3的结果是 ( )
A.-8a3 B.-6a3 C.6a3 D.8a3
3.计算(a2b)3的结果是 ( )
A.a2b3 B.a5b3 C.a6b D.a6b3
4.(2021黄石)计算(-5x3y)2的结果是 ( )
A.25x5y2 B.25x6y2 C.-5x3y2 D.-10x6y2
5.下列计算正确的是 ( )
A.(ab2)2=ab4 B.(3xy)3=9x3y3
C.(-2a2)2=-4a4 D.(-3a2bc2)2=9a4b2c4
6.若(2am)3=na15成立,则m= ,n= .
7.已知am=32,bm=4,则(a2b)m= .
知识点 2 积的乘方的逆用
8.计算:42022×(-0.25)2022= .
9.已知2m=4,3m=9,则6m的值为 ( )
A.216 B.-36 C.6 D.36
10.计算(-2)2021×2022的结果是 ( )
A.-2 B.2 C.- D.
11.下列计算正确的是 ( )
A.a·a2=a2 B.(a2b)3=a2b3
C.a2·a3=a6 D.(a2)2=a4
12.如图果2x+1×3x+1=62x-1,那么x的值为 .
13.若x3=-8a6b9,则x= .
14.计算:
(1)(-a3b)4+2(a6b2)2;
(2)(-9)3×-3×3.
15.已知xn=5,yn=3,求(xy)3n的值.
16.(教材例4变式)太阳可以近似地看作是球体,如图果用V,r分别表示球的体积和半径,那么V=πr3.太阳的半径约为6×105 km,它的体积大约是多少 (π取3)
17.同学们,我们学习了“积的乘方”这个知识点,知道(3b)2=9b2,请你用几何形直观地解释这个式子.
答案
第2课时 积的乘方
1.B (2y)2=22·y2=4y2.
2.A (-2a)3=(-2)3·a3=-8a3.故选A.
3.D (a2b)3=(a2)3·b3=a6b3.故选D.
4.B (-5x3y)2=25x6y2.故选B.
5.D (-3a2bc2)2=(-3)2·(a2)2·b2·(c2)2=9a4b2c4.
6.5 8
7.324 (a2b)m=a2m·bm=(am)2·bm=92×4=81×4=324.
8.1 9.D
10.C 原式=(-2)2021×2021×=-2×2021×=(-1)2021×=-.
11.D A项,a·a2=a3≠a2,本选项错误;B项,(a2b)3=a6b3≠a2b3,本选项错误;C项,a2·a3=a5≠a6,本选项错误;D项,(a2)2=a4,本选项正确.
12.2 因为2x+1×3x+1=62x-1,
所以(2×3)x+1=6x+1=62x-1,
所以x+1=2x-1,解得x=2.
13.-2a2b3 因为(-2a2b3)3=-8a6b9,所以x=-2a2b3.
14.解:(1)(-a3b)4+2(a6b2)2=a12b4+2a12b4=3a12b4.
(2)原式==8.
15.解:因为xn=5,yn=3所以(xy)3n=x3ny3n=(xnyn)3=(5×3)3=3375.
16.解:V=πr3≈×3×(6×105)3=4×63×1015=8.64×1017 (km3).
因而,太阳的体积大约是8.64×1017 km3.
17.解:如图,正方形ABCD是由9个完全相同的小正方形组成的,设每个小正方形的边长均为b.因为S正方形ABCD=(3b)2,且S正方形ABCD=9b2,所以(3b)2=9b2.