8.1.3 第1课时 同底数幂的除法
知识点 1 运用同底数幂的除法法则计算
1.(2021重庆)计算x4÷x的结果正确的是 ( )
A.x4 B.x3 C.x2 D.x
2.计算(-a)6÷(-a)2的结果是 ( )
A.-a2 B.-a4 C.a4 D.a2
3.计算(-a3)2÷a2的结果是 ( )
A.-a3 B.a3 C.a4 D.a7
4.计算(a2)3÷(a2)2的结果是 ( )
A.a B.a2 C.a3 D.a4
5.计算:315÷313= .
6.若xm+n÷xn=x3,则m= .
7.计算:b2m+2÷bm-1= .
8.计算:x10÷x4÷x2= .
9.计算:(-ax)5÷(ax)3= .
10.计算:
(1)y4÷y3; (2)(-m)5÷(-m)2;
(3)(-m3)3÷m5; (4)(x-y)10÷(y-x)5.
知识点 2 同底数幂的除法的逆用
11.若am=2,an=3,则am-n的值为 ( )
A.-1 B.1 C. D.
12.若xm=6,xn=-2,则xm-n= .
13.若am=2022,an=-1,则am-4n= .
14.下列计算错误的是 ( )
A.b8÷b4=b2 B.(b8)2÷b8=b8
C.(bc)8÷(bc)4=b4c4 D.(bx3)3÷(bx3)=b2x6
15.已知5x=3,5y=2,则52x-3y的值为 ( )
A. B.1 C. D.
16.若a3x÷ax-1=a7,则x的值为 .
17.若2a=3,2b=5,2c=,用含a,b的代数式表示c为 .
18.计算:
(1)(xy)5÷(xy)3÷(-xy);
(2)(x-y)10÷(y-x)4·(x-y)2;
(3)x3·x5-(2x4)2+x10÷x2.
19.已知am=5,an=7,求a2m-3n的值.
20.已知5x-3y-2=0,求1010x÷106y的值.
21.若2x=3,2y=6,2z=12,求x,y,z之间的数量关系.
答案
8.1.3 第1课时 同底数幂的除法
1.B 原式==x3.故选B.
2.C (-a)6÷(-a)2=(-a)6-2=(-a)4=a4.
3.C (-a3)2÷a2=a6÷a2=a4.
4.B (a2)3÷(a2)2=a6÷a4=a6-4=a2.故选B.
5.9 原式=315-13=32=9.
6.3 因为xm+n÷xn=xm+n-n=xm=x3,所以m=3.
7.bm+3 8.x4
9.-a2x2 原式=-(ax)5-3=-(ax)2=-a2x2.
10.解:(1)原式=y.
(2)原式=(-m)3=-m3.
(3)原式=-m9÷m5=-m4.
(4)原式=(y-x)10÷(y-x)5=(y-x)10-5=(y-x)5.
11.C am-n=am÷an=.故选C.
12.-3 xm-n=xm÷xn=6÷(-2)=-3.
13.2022 am-4n=am÷(an)4=2022÷(-1)4=2022.
14.A 15.D
16.3 因为a3x÷ax-1=a3x-(x-1)=a2x+1=a7,所以2x+1=7,解得x=3.
17.c=a+b-2 因为2c====2a+b-2,所以c=a+b-2.
18.解:(1)原式=-(xy)=-xy.
(2)原式=(x-y)10-4+2=(x-y)8.
(3)原式=x8-4x8+x8=-2x8.
19.解:因为am=5,an=7,所以a2m-3n=(am)2÷(an)3=52÷73=.
20.解:由5x-3y-2=0,得5x-3y=2,
所以1010x÷106y=1010x-6y=102(5x-3y)=102×2=104.
故1010x÷106y的值是104.
21.解:因为2y÷2x=2y-x=6÷3=2,
2z÷2y=2z-y=12÷6=2,
所以2y-x=2z-y,
即y-x=z-y,所以2y=x+z.