四川省南山中学2013届高三下期入学考试数学(文)试题(无答案)

文档属性

名称 四川省南山中学2013届高三下期入学考试数学(文)试题(无答案)
格式 zip
文件大小 83.7KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2013-03-13 22:54:41

图片预览

文档简介

2013年2月28日
南山中学2013届高三下期入学考试数学(文)试题
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知复数(为虚数单位)则Z的虚部为( )
A.1 B. C. D.
2.设集合A={x|x<3},B={x|x>2},那么“x∈A或x∈B”是“x∈A∩B”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
3.曲线,则点P的坐标为 ( )
A. B. C. D.
4.抛物线的焦点坐标是 ( )

5.等差数列的前n项和为,且9,3,成等比数列. 若=3,则= ( )
A. 7 B. 8 C. 12 D. 16
6.已知某个几何体的三视图如右下,根据图中标出的尺寸(单位:cm),可得这个几何体
的体积是( )
A. B.
C. D.
7.执行右下图所示的程序框图,若输出的是,则输入整数的最小值是 ( )
A.7      B.8     C.15     D.16
8.已知则( )
A. B. C. D.
9.已知双曲线的左顶点为,右焦点为,为双曲线右支
上一 点,则最小值为( )
A. B. C. D.
10.已知是偶函数,且在上是增函数,如果在上恒成立,则实数的取值范围是( )
A. B. C. D.
二、填空题(本大题共5小题,每小题5分,共25分.)
11.圆关于直线对称的圆的方程为 ;
12.设实数满足不等式组,则的最小值为 ;
13.已知函数,且关于的方程有且只有一个实根,则实数的取值范围是 ;
14.已知点P为所在平面上的一点,且,其中为实数,若点P落在的内部,则的取值范围是 ;
15.已知函数f(x)=ex+x.对于曲线y=f(x)上横坐标成等差数列的三个点A、B、C,给出以下判断:
①△ABC一定是钝角三角形;
②△ABC可能是直角三角形;
③△ABC可能是等腰三角形;
④△ABC不可能是等腰三角形.其中,正确的判断是 .
三. 解答题(本大题共6小题,共75分.解答写出文字说明、证明过程或演算步骤.)
16.(本小题满分12分)
已知数列为等差数列,且.
(1)求数列的通项公式;
(2)证明….
17.(本小题满分12分)
锐角中,角A、B、C所对的边分别为、、,且.
(1)若,求角A、B、C大小;
(2)已知向量,,求的取值范围.
18.(本小题满分12分)
有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用茎叶图表示这两组数据如下:
(1)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;
(2)若从参加培训的5位工人中选2人参加技能竞赛,
求A、B二人中至少有一人参加技能竞赛的概率.
19.(本小题满分12分)
如图,在四面体中,,,点,分别是,的中点.
(1)求证:平面⊥平面;
(2)若平面⊥平面,且,
求三棱锥的体积.
20.(本小题满分13分)
已知椭圆的中心在原点,焦点在轴上,一个顶点为,且其右焦点到直线的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为 ,且过定点的直线,使与椭圆交于两个不同的点、,且?若存在,求出直线的方程;若不存在,请说明理由.
21.(本题满分14分)
已知函数,若函数使得恒成立,则称是的一个“下界函数” .
(1)如果函数(t为实数)为的一个“下界函数”,求t的取值范围;
(2)设函数,试问函数是否存在零点,若存在,求出零点个数;若不存在,请说明理由.
同课章节目录