5.1.2 相交线(3节内容)

文档属性

名称 5.1.2 相交线(3节内容)
格式 zip
文件大小 2.7MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2013-03-14 08:33:52

文档简介

课件19张PPT。5.1 相交线(5.1.2 垂线)在相交线的模型中,固定木条a,转动木条b,当α =90°时,a与b垂直.当b的位置变化时,a、b所成的角α也会发生变化.当α ≠90°时,a与b不垂直,叫斜交.两条直线相交斜交垂直垂直是相交的特殊情况观察思考)α abbbbb)α 1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。例如、如图,a、b互相垂直,O叫垂足.a叫b的垂线,b也叫a的垂线。一、垂直的定义从垂直的定义可知,
判断两条直线互相垂直的关键:
只要找到两条直线相交时四个交角中一个角是直角。1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。ba用“⊥”和直线字母表示垂直Oα 2.垂直的表示:例如、如图,a、b互相垂直, 垂足为O,则记为:a⊥b或b⊥a, 若要强调垂足,则记为:a⊥b, 垂足为O. 日常生活中,两条直线互相垂直的情形很常见,说出图5.1-6中的一些互相垂直的线条.你能再举出其他例子吗?生活中的垂直生活中的垂直ABCDO书写形式: 如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O。∵∠AOD=90°(已知)
∴AB⊥CD(垂直的定义)书写形式: 反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°。3.垂直的书写形式:∵ AB⊥CD (已知)
∴ ∠AOD=90° (垂直的定义)应用垂直的定义:∠AOC=∠BOC=∠BOD=90°练习: 1. 如图,直线AB、CD相交于点O,OE⊥AB,∠1=125°,
求∠COE的度数.ACEBDO1)2、如图,∠ABC=90° ,∠1=60° ,过B作AC的垂线BO,垂足是O,过O作BC的垂线,垂足是D,若∠1= ∠2,求∠ABO, ∠BOD.∵BO ⊥AC于O点(已知)∵∠ABC=90°( )∠1=60°( )已知∴∠ABO=30°解:(已知)∴∠BOC=90°∴∠BOD=30°(互余的定义)(互余的定义)已知(垂直的定义)又∵∠2=∠1∴∠2=60°(等量代换)
1.下面四种判断两条直线垂直的方法正确的有___个????????????????? [??? ]
(1)两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直.
(2)两条直线相交,有一组邻补角相等,则这两条直线互相垂直.
(3)两条直线相交,所成的四个角相等,这两条直线互相垂直.
(4)两条直线相交,有一组对顶角互补,则这两条直线互相垂直.
A.4????????? B.3???????????? C.2???????????? D.1选择题巩固练习 A2.两条直线相交所成的四个角中,下列条 件中能判定两条直线垂直的是 [??? ]
A.有两个角相等 B.有两对角相等
C.有三个角相等 D.有四对邻补角
3.两个角的平分线相互垂直的有? [??? ]
A.两角互补; B.两角互为对顶角;
C.两角都是直角; D.两角为邻补角
巩固练习 选择题CD看谁做得快1.若直线m、n相交于点O,
∠1=90°,则__________。
2.若直线AB、CD相交于点O,
且AB⊥CD,那么∠BOD=____。
3.如图,BO⊥AO,∠BOC
与∠BOA的度数之比为1:5,
那么∠COA=_____,
∠BOC的补角为______度。m⊥n90°72°162二、垂线的画法问题:
怎么样画垂线?1.垂线的画法:问题:
这样画l的垂线可以画几条?1放、
2靠、
3画线、lO如图,已知直线 l,作l的垂线。工具:直尺、三角板A无数条1.垂线的画法:lA如图,已知直线 l 和l上的一点A ,作l的垂线.B4画线:沿着三角板的另一直角边画出垂线.1放:放直尺,直尺的一边要与已知直线重合;3移:移动三角板到已知点;2靠:靠三角板,把三角板的一直角边靠在直尺上; 则所画直线AB是过点A的直线l的垂线.1.垂线的画法:lA如图,已知直线 l 和l外的一点A ,作l的垂线.B4画线:沿着三角板的另一直角边画出垂线.1放:放直尺,直尺的一边要与已知直线重合;3移:移动三角板到已知点;2靠:靠三角板,把三角板的一直角边靠在直尺上; 则所画直线AB是过点A的直线l的垂线.请同学们画一下 结论:
过一点有且只有一条直线与已知直线垂直.能作一条,而且只能作一条.问题:过已知直线 l 和l上(或外)的一点A ,作l的垂线,可以作几条? 注意:
过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.课件18张PPT。线段、射线的垂线应怎么画呢? 练习:P7/练习EEE注意:画线段(或射线)的垂线时,有时要将线段延长(或将射线反向延长)后再画垂线.课堂练习 C2、如图,分别过A、B、C作BC、AC、AB的垂线。3、如图,过P作直线PM⊥OA,垂足为点M.
过P作线段PN⊥OB于N点。DEFMN解:如图、直线AD⊥BC于D、直线BE⊥AC于E、直线CF⊥AB于F解:如图、直线PM⊥OA于M、线段PN⊥OB于N思考 有人不慎掉入有鳄鱼的湖中。如图,他在P点,应选择什么样的路线尽快游到岸边m呢?图中有几条以H为端点的线段?
你能比较出它们的大小吗?
你能得出什么结论?性质2:直线外一点与直线上各点连结的
所有线段中垂线段最短.
简记为:垂线段最短思考:“垂线”与“垂线段”有什么区别?学点4:点到直线的距离从直线外一点到这条直线的
垂线段的长度,叫做点到直线的距离思考:“垂线段”与“垂线段的长度”
有什么区别?1、已知点A,与点A的距离是5cm的直线可画( )
A. 1条 B. 2条 C. 3条 D. 无数条D选择题:B如图,怎样测量 点A 到 直线m 的距离?m1.过点A画出直线m的垂线AB,垂足为B;2.用直尺量出垂线段AB的长.AB 例1、如图,量出(1)村庄A与货场B的距离,(2)货场B到铁道的距离。例3、如图,点M、N分别在直线AB、CD上,用三角板画图, 1)过M点画CD的垂线交CD于F点, 2)M点和N点的距离是线段____的长, 3)M点到CD的距离是线段____的长。MNMFABCDMN∴直线MF为所求垂线。 如图:在铁路旁边有一张庄,现在要建一火车站,为了使张庄人乘火车最方便(即距离最近),请你在铁路上选一点来建火车站,并说明理由。张庄拓展应用1垂线段最短拓 展 应 用2 如图:要把水渠中的水引到水池C中,在渠岸的什么地方开沟,水沟的长度才能最短?
请画出图来,并说明理由。C∟垂线段最短立定跳远中,体育老师是如何测量运动员的成绩的?体育老师实际上测量的是点到直线的距离
小常识 在直角三角形的三条边中哪一条最长?思考答:直角所对的边即斜边最长.选择题:2.如图, AC⊥BC, ∠C=900 ,线段AC、BC、CD中最短的是( )
(A) AC (B) BC (C) CD (D) 不能确定DABCC想一想:DBCAE已知: 如图AD<AE <AC<AB 能说AD的长是A到BC的 距离吗?答:不能。回忆两条直线相交这部分知识,并问:你们能够把它们画成一个知识结构图吗? 小结课件24张PPT。5.1.1 相交线香港昂船洲大桥 活动1 认识邻补角和对顶角 问题
(1)看见一把张开的剪刀,你能联想出什么样的几何图形?1243ABCD如右图中:
直线AB和CD交于点O,
得到了四个角是
O∠1、∠2、∠3、∠4。对顶角下 页返回O对顶角对顶角对顶角对顶角∠2和∠4也是对顶角其中 ∠ 1和∠ 3是直线AB、
CD相交得到的,它们有 一
个公共顶点 ,没有公共边,
像这样的两个角叫做
图中还有这样的角吗?下 页ABCDO12C图1如图1:∠2是∠1的 ,它们的
两边分别在同一条直线上。因此一个
角的对顶角可看作是把这个角的两边
延长得到的没有公共边的角。对顶角反向没有公共边12ACDO 下面我们再来看∠1和∠2也
是直线AB、CD相交得到的,它们不仅有 一个公共顶点 还有 一条公共边 像这样的两个角叫做 。另外像∠2和∠3、∠1和∠4、   和 都是邻补角。 OA∠3∠4邻补角下 页返回34BO邻补角邻补角邻补角邻补角下 页12ABC图2如图2:∠1和∠2是 ,可以看
成是一条直线被经过直线上一点的一
条 线分成的两个角。由此可知,邻
补角不但是指两个角的大小关系:∠1
+∠2= 度;而且指两个角的位置关
系:不但有一个公共顶点,而且有一
条公共边。邻补角180射O问题:一对邻补角一定互补吗?
一对互补的角一定是邻补角吗?1练习1、下列各图中∠1、∠2是对顶角吗?为什么?21212)((())1练习2、下列各图中∠1、∠2是邻补角吗?为什么?21212)((()(我们知道邻补角是互
补的,那么对顶角有
什么样的关系呢?对顶角相等 ( 的定义) ∴∠1=∠3( )于是得对顶角的重要性质:∵∠1+∠4= ∠3+∠4=邻补角对顶角相等(对顶角相等)∵∠3=∠1∠1=68°( )已知∴∠3=68°解:(等量代换)∴∠2=180°—∠1=112°∴∠4=∠2=112°(对顶角相等)(邻补角的定义)小结(3)如图是一个对顶角量角器,
你能说明它度量角度的原理吗?活动4 巩固练习 课堂小结1、两条直线相交所得的四个角
中,有一个公共顶点,没有公
共边的两个角叫做对顶角。不
仅有一个公共顶点,还有一条
公共边的两个角叫做邻补角。
2、邻补角表明了两个角的大小
关系是互补,位置关系是有公共
顶点和公共边;对顶角相等。3、用对顶角的性质进行简单的推理和证明返回练习归纳小结 ①两条直线相交形成的角
②有一个公共顶点;
③没有公共边 ①两条直线相交而成;
②有一个公共点;
③有一条公共边 对顶
角相

角的名称 特 征 性 质 相 同 点 不 同 点对顶角
邻补角
邻补
角互
补 ①都是两条直线相交而成的 角;
②都有一个公共顶点;
③都是成对出现的 ①有无公共边
②两直线相交时,
对顶角只有一对
邻补角有两个 巩固练习(D) (4)1、一个角的对顶角有 个,邻补角最多有 个,而补角
则可以有 个。3、如图,直线AB、CD相交于O,
∠AOC=80°;∠1=30°;求∠2的度数ACBDE12解:∵∠DOB=∠ ,( )
=80°(已知)
∴∠DOB=  °(等量代换)
又∵∠1=30°( )
∴∠2=∠ -∠ = - = °一两无数AOC∠AOCDOB180°30°50对顶角相等已知二、 填空返回802、右图中∠AOC的对顶角是
邻补角是 ∠DOB∠AOD和∠COB测试达标测试一、判断(每题10分)
1、有公共顶点且相等的两个角是对顶角。( )
2、两条直线相交,有两组对顶角。 ( )
3、两条直线相交所构成的四个角中有一个角是直角,
那么其余的三个角也是直角。 ( )二、选择(每题10分)
1、如右图直线AB、CD交于点O,OE为射线,那么( )
A。∠AOC和∠BOE是对顶角;
B。∠COE和∠AOD是对顶角;
C。∠BOC和∠AOD是对顶角;
D。∠AOE和∠DOE是对顶角。
2、如右图中直线AB、CD交于O,
OE是∠BOC的平分线且∠BOE=50度,
那么∠AOE=( )度
(A)80;(B)100;(C)130(D)150。ABCDOE×√√CC下 页三、填空(每空3分)
如图1,直线AB、CD交EF于点
G、H,∠2=∠3,∠1=70度。求
∠4的度数。
解:∵∠2=∠ ( )
∠1=70 °( )
∴∠2= (等量代换)
又∵ (已知)
∴∠3= ( )
∴∠4=180°—∠ = ( 的定义)ACDBEFGH1234四、解答题
直线AB、CD交于点O,OE是
∠AOD的平分线,知∠AOC=50度。
求∠DOE的度数。ABCDOE图1图21对顶角相等已知70°∠2=∠370 °等量代换3110 °邻补角上 页解:∵∠AOC=50°(已知)
∴∠AOD=180°—∠AOC=180°—50°
=130°(邻补角的定义)
∵OE平分∠AOD(已知)
∴∠DOE=1/2∠AOD=130°÷2=65°(角
平分线的定义)四、解答题(每一步5分)
直线AB、CD交于点O,OE是
∠AOD的平分线,知∠AOC=50度。
求∠DOE的度数。ABCDOE图2作业