§3.1.3 概率的基本性质1
授课
时间
第 周 星期 第 节
课型
新授课
主备课人
学习
目标
1理解互斥事件、对立事件的定义,会判断所给事件的类型;
2.掌握互斥事件的概率加法公式并会应用。
重点难点
重点:概率的加法公式及其应用;事件的关系与运算
难点:互斥事件与对立事件的区别与联系
学习
过程
与方
法
自主学习
1.互斥事件:在一个随机试验中,把一次试验下___________的两个事件A与B称作互斥事件。
2.事件A+B:给定事件A,B,规定A+B为 ,事件A+B发生是指事件A和事件B________。
3.对立事件:事件“A不发生”称为A的对立事件,记作_________,对立事件也称为________,在每一次试验中,相互对立的事件A与事件不会__________,并且一定____________.
4.互斥事件的概率加法公式:
(1)在一个随机试验中,如果随机事件A和事件B是互斥事件,那么有P(A+B)=_________.
(2)如果随机事件中任意两个是互斥事件,那么有____________。
5.对立事件的概率运算:_____________。
探索新知:
1.如何从集合的角度理解互斥事件?
2.互斥事件与对立事件有何异同?
3.对于任意两个事件A,B,P(A+B)=P(B)+P(B)是否一定成立?
4.某战士在一次射击训练中,击中环数大于6的概率为0.6,击中环数是6或7或8的概率为0.3,则该战士击中环数大于5的概率为0.6+0.3=0.9,对吗?
5.什么情况下考虑用对立事件求概率呢?
6.阅读p143 例3和p144例4,你的问题是什么?
精讲互动
例1.判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由。
从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取一张。
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”。
例2 . 解读课本例5和例6
达标训练
1.课本p147 练习1 2 3 4
2.(选做)一盒中装有各色球12个,其中5个红球、,4个黑球、2个白球、1个绿球。从中随机取出1球,求:
(1) 取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率。
作业
布置
1.习题3-2 6,7,8
2. 教辅资料
学习小结/教学
反思
§3.1.3 概率的基本性质2
授课
时间
第 周 星期 第 节
课型
习题课
主备课人
学习
目标
1理解互斥事件与对立事件的概念,会判断所给事件的类型;
2.能利用互斥事件与对立事件的概率公式进行相应的概率运算。
重点难点
重点:概率的加法公式及其应用;事件的关系与运算
难点:互斥事件与对立事件的区别与联系
学习
过程
与方
法
自主学习
1复习:(1)互斥事件: .
(2)事件A+B:给定事件A,B,规定A+B为 ,事件A+B发生是指事件A和事件B________。
(3)对立事件:事件“A不发生”称为A的对立事件,记作_________,对立事件也称为________,在每一次试验中,相互对立的事件A与事件不会__________,并且一定____________.
(4)互斥事件的概率加法公式:
(1)在一个随机试验中,如果随机事件A和事件B是互斥事件,那么有P(A+B)=_________.
(2)如果随机事件中任意两个是互斥事件,那么有____________。
(5)对立事件的概率运算:_____________。
2探索新知:
阅读教材p147例7,你得到的结论是什么?
精讲互动
例1.某公司部门有男职工4名,女职工3名,由于工作需要,需从中任选3名职工出国洽谈业务,判断下列每对事件是否为互斥事件,如果是,再判断它们是否为对立事件:
(1)至少1名女职工与全是男职工;
(2)至少1名女职工与至少1名男职工;
(3)恰有1名女职工与恰有1名男职工;
(4)至多1名女职工与至多1名男职工。
例2.课本p148 例8
例3.(选讲)袋中有红、黄、白3种颜色的球各一只,每次从中任取1只,有放回的抽取3次,求:
(1)3只球颜色全相同的概率;
(2)3只球颜色不全相同的概率。
达标训练
1.课本p151 练习1 2
2.选择教辅资料
作业
布置
1. 习题3-2 9,10,11
2. 预习下一节内容
学习小结/教学
反思
§3.2 古典概型1
授课
时间
第 周 星期 第 节
课型
新授课
主备课人
学习
目标
1理解古典概型的两个特征及古典概型的定义;
2.掌握古典概型的概率计算公式。
重点难点
重点:理解古典概型及其概率计算公式
难点:古典概型的判断
学习
过程
与方
法
自主学习
1.古典概型的特征
2.基本事件:试验的 称为基本事件。
3.古典概型的概率公式:对于古典概型,通常试验中的某一事件A是由几个_________组成,
如果试验的所有可能结果(基本事件)数为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为:P(A)=________________=_____________。
探索新知:
任意一个试验都是古典概型吗?
2.判断下列两个试验是否是古典概型?
(1)在线段[0,2]上任取一点,求此点的坐标小于1的概率;
(2)从1,2,3,4,5,6六个数中任取一个数,求此数是2的倍数的概率。
3.怎样计算古典概型中基本事件的总数?
4.古典概型的概率计算公式与随机事件频率的计算公式有什么区别?
精讲互动
例1.下列试验是否属于古典概型?
(1)一个盒子中有三个除颜色外完全相同的球,其中红球、黄球、黑球各一个,从中任取一球,“取出的是红球”、 “取出的是黄球”、 “取出的是黑球”;
(2)向一个圆内随机地投一个点,该点落在圆内任意一点都是等可能的。
例2.用红、黄、蓝三种不同颜色给如图所示的3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;
(2)3个矩形颜色都不同的概率。
达标训练
1.课本p138 练习1 2 3 4
2.教辅资料
作业
布置
1.习题3-2 1,2
2. 教辅资料
3. 预习下一节内容
学习小结/教学
反思
3.1.3 概率的基本性质
教学目标:
(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类比与归纳的数学思想.
(2)概率的几个基本性质:①必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;②当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);③若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1-P(B).
(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系,通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣.
教学重点:
概率的加法公式及其应用.
教学难点:
事件的关系与运算.
教学方法:
讲授法
课时安排
1课时
教学过程
一、导入新课:
全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是2/7和1/5,则该省夺取该次冠军的概率是2/7+1/5,对吗?为什么?为解决这个问题,我们学习概率的基本性质.
二、新课讲解:
Ⅰ、事件的关系与运算
1、提出问题
在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于3},D3={出现的点数小于5},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},……
类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件.
(1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗?
(2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生?
(3)如果事件D2与事件H同时发生,就意味着哪个事件发生?
(4)事件D3与事件F能同时发生吗?
(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?
2、活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确.
3、讨论结果:
(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.
(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生.
(3)如果事件D2与事件H同时发生,就意味着C5事件发生.
(4)事件D3与事件F不能同时发生.
(5)事件G与事件H不能同时发生,但必有一个发生.
4、总结:由此我们得到事件A,B的关系和运算如下:
①如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为BA(或AB),不可能事件记为,任何事件都包含不可能事件.
②如果事件A发生,则事件B一定发生,反之也成立,(若BA同时AB),我们说这两个事件相等,即A=B.如C1=D1.
③如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为A∪B或A+B.
④如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为A∩B或AB.
⑤如果A∩B为不可能事件(A∩B=),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.
⑥如果A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生.
Ⅱ、概率的几个基本性质
1、提出以下问题:
(1)概率的取值范围是多少?
(2)必然事件的概率是多少?
(3)不可能事件的概率是多少?
(4)互斥事件的概率应怎样计算?
(5)对立事件的概率应怎样计算?
2、活动:
学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义:
(1)由于事件的频数总是小于或等于试验的次数,所以,频率在0—1之间,因而概率的取值范围也在0—1之间.
(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1.
(3)不可能事件是在试验中一定不发生的事件,所以频率为0,因而概率是0.
(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和.
(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,则A∪B的频率为1,因而概率是1,由(4)可知事件B的概率是1与事件A发生的概率的差.
3、讨论结果:
(1)概率的取值范围是0—1之间,即0≤P(A)≤1.
(2)必然事件的概率是1.如在掷骰子试验中,E={出现的点数小于7},因此P(E)=1.
(3)不可能事件的概率是0,如在掷骰子试验中,F={出现的点数大于6},因此P(F)=0.
(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(A∪B)=P(A)+P(B),这就是概率的加法公式.也称互斥事件的概率的加法公式.
(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,P(A∪B)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G={出现的点数为偶数}与H={出现的点数为奇数}互为对立事件,因此P(G)=1-P(H).
三、例题讲解:
例: 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方块(事件B)的概率是,问:
(1)取到红色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
活动:学生先思考或交流,教师及时指导提示,事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1-P(C).
解:(1)因为C=A∪B,且A与B不会同时发生,所以事件A与事件B互斥,根据概率的加法公式得P(C)=P(A)+P(B)=.
(2)事件C与事件D互斥,且C∪D为必然事件,因此事件C与事件D是对立事件,P(D)=1-P(C)=.
四、课堂练习:
教材第121页练习:1、2、3、4、5
五、课堂小结:
1.概率的基本性质是学习概率的基础.不可能事件一定不出现,因此其概率为0,必然事件一定发生,因此其概率为1.当事件A与事件B互斥时,A∪B发生的概率等于A发生的概率与B发生的概率的和,从而有公式P(A∪B)=P(A)+P(B);对立事件是指事件A与事件B有且仅有一个发生.
2.在利用概率的性质时,一定要注意互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形:①事件A发生B不发生;②事件B发生事件A不发生,对立事件是互斥事件的特殊情形.
六、课后作业:
习题3.1A组5,B组1、2.
预习教材3.2.1
板书设计
3.1.3 概率的基本性质
双基达标 ?限时20分钟?
1.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为 ( ).
A.至多有2件次品 B.至多有1件次品
C.至多有2件正品 D.至少有2件正品
解析 至少有2件次品包含2,3,4,5,6,7,8,9,10共9种结果,故它的对立事件为含有1或0件次品.
答案 B
2.从某班学生中任找一人,如果该同学身高小于160 cm的概率为0.2,该同学的身高在[160 cm,175 cm]的概率为0.5,那么该同学的身高超过175 cm的概率为 ( ).
A.0.2 B.0.3 C.0.7 D.0.8
解析 所求概率为1-0.2-0.5=0.3.
答案 B
3.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.
在上述事件中,是对立事件的是 ( ).
A.① B.②④ C.③ D.①③
解析 从1~9中任取两数,有以下三种情况:(1)两个均为奇数;(2)两个均为偶数;(3)一个奇数和一个偶数,故选C.
答案 C
4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则对产品抽查一件,抽得正品的概率为________.
解析 记事件A={甲级品},B={乙级品},C={丙级品},事件A、B、C彼此互斥,且A与(B∪C)是对立事件,所以P(A)=1-P(B∪C)=1-P(B)-P(C)=1-0.03-0.01=0.96.
答案 0.96
5.同时抛掷两枚骰子,没有5点或6点的概率为,则至少有一个5点或6点的概率是________.
解析 记“没有5点或6点”的事件为A,则P(A)=,“至少有一个5点或6点”的事件为B.因A∩B=?,A∪B为必然事件,所以A与B是对立事件,则P(B)=1-P(A)=1-=.故至少有一个5点或6点的概率为.
答案
6.经统计某储蓄所一个窗口等候的人数及相应的概率如下:
排队人数
0
1
2
3
4
5人及5人以上
概率
t
0.3
0.16
0.3
0.1
0.04
(1)t是多少?
(2)至少3人排队等候的概率是多少?
解 (1)∵t+0.3+0.16+0.3+0.1+0.04=1,∴t=0.1.
(2)至少3人包括3人,4人,5人以及5人以上,且这三类事件是互斥的,∴概率为0.3+0.1+0.04=0.44.
综合提高 ?限时25分钟?
7.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为 ( ).
A. B. C. D.
解析 记取到语文、数学、英语、物理、化学书分别为事件A、B、C、D、E,则A、B、C、D、E互斥,取到理科书的概率为事件B、D、E概率的和.
∴P(B∪D∪E)=P(B)+P(D)+P(E)
=++=.
答案 C
8.如果事件A、B互斥,记、分别为事件A、B的对立事件,那么 ( ).
A.A∪B是必然事件 B.∪是必然事件
C.与一定互斥 D.与一定不互斥
解析 用Venn图解决此类问题较为直观,如右图所示,∪是
必然事件,故选B.
答案 B
9.某战士射击一次中靶的概率为0.95,中靶环数大于5的概率为0.75,则中靶环数大于0且小于6的概率为________.(只考虑整数环数)
解析 因为某战士射击一次“中靶的环数大于5”事件A与“中靶的环数大于0且小于6”事件B是互斥事件,P(A+B)=0.95.
∴P(A)+P(B)=0.95,∴P(B)=0.95-0.75=0.2.
答案 0.2
10.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前四声内被接的概率是________.
解析 记“响第1声时被接”为事件A,“响第2声时被接”为事件B,“响第3声时被接”为事件C,“响第4声时被接”为事件D.“响前4声内被接”为事件E,则易知A、B、C、D互斥,且E=A∪B∪C∪D,所以由互斥事件的概率的加法公式得
P(E)=P(A∪B∪C∪D)
=P(A)+P(B)+P(C)+P(D)
=0.1+0.3+0.4+0.1=0.9.
答案 0.9
11.在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07,计算:
(1)小明在数学考试中取得80分以上的概率;
(2)小明考试及格的概率.
解 分别记小明的成绩“在90分以上”“在80~89分”“在70~79分”“在60~69分”为事件B、C、D、E,这四个事件彼此互斥.
(1)小明的成绩在80分以上的概率是
P(B∪C)=P(B)+P(C)=0.18+0.51=0.69.
(2)法一 小明考试及格的概率是
P(B∪C∪D∪E)=P(B)+P(C)+P(D)+P(E)
=0.18+0.51+0.15+0.09=0.93.
法二 小明考试不及格的概率是0.07,
所以小明考试及格的概率是P(A)=1-0.07=0.93.
所以小明在数学考试中取得80分以上的概率是0.69,考试及格的概率是0.93.
12.(创新拓展)袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:
(1)“3只球颜色全相同”的概率;
(2)“3只球颜色不全相同”的概率.
解 (1)“3只球颜色全相同”包括“3只全是红球”(事件A),“3只全是黄球”(事件B),“3只球全是白球”(事件C),且它们彼此互斥,故“3只球颜色全相同”这个事件可记为A∪B∪C,又P(A)=P(B)=P(C)=,
故P(A∪B∪C)=P(A)+P(B)+P(C)=.
(2)记“3只球颜色不全相同”为事件D,则事件为“3只球颜色全相同”,又P()=P(A∪B∪C)=.
所以P(D)=1-P()=1-=,
故“3只球颜色不全相同”的概率为.
课件31张PPT。【课标要求】
1.了解事件间的相互关系.
2.理解互斥事件、对立事件的概念.
3.会用概率的加法公式求某些事件的概率.
【核心扫描】
1.掌握事件的关系、运算与概率的性质.(重点)
2.事件关系的判定.(难点)
3.互斥事件与对立事件的关系.(易混点)3.1.3 概率的基本性质事件的关系
(1)包含关系
一般地,对于事件A与事件B,如果事件A发生,则事件B_________,这时称事件B包含事件A(或称事件A包含于事件B),记作B?A(或A?B).不可能事件记作?,任何事件都包含不可能事件,即??A.
(2)相等关系
一般地,若______,且______,那么称事件A与事件B相等,记作A=B.自学导引1.一定发生B?AA?B(3)并事件(或称和事件)
若事件C发生当且仅当事件A发生___事件B发生,则称事件C为事件A与事件B的并事件(或和事件),记作C=A∪B(或C=A+B).
或(4)交事件(或积事件)
若事件C发生当且仅当事件A发生__事件B发生,则称事件C为事件A与事件B的交事件(或积事件).记作C=A∩B(或C=AB).
如图所示.
(5)互斥事件
若A∩B为不可能事件(A∩B=?),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会_____发生.且同时(6)对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,其含义是:事件A与事件B在任何一次试验中_________一个发生.
在同一试验中,设A、B是两个随机事件,“若A∩B=?,则称A与B是两个对立事件”,对吗?
提示 这种说法不正确.对立事件是互斥事件的特殊情况,除了满足A∩B=?外,A∪B还必须为必然事件.从数值上看,若A、B为对立事件,则P(A∪B)=P(A)+P(B)=1.有且仅有概率的几个性质
(1)范围
任何事件的概率P(A)∈_____.
(2)必然事件概率
必然事件的概率P(A)=1.
(3)不可能事件概率
不可能事件的概率P(A)=0.
(4)概率加法公式
如果事件A与事件B互斥,则有P(A∪B)=_ _________.
(5)对立事件概率
若事件A与事件B互为对立事件,那么A∪B为必然事件,则有P(A∪B)=P(A)+P(B)= ___.
2.[0,1]P(A)+P(B)1 在同一试验中,对任意两个事件A、B,P(A∪B)=P(A)+P(B)一定成立吗?
提示 不一定,只有A与B互斥时,P(A∪B)=P(A)+P(B)才成立.1.事件与集合之间的对应关系名师点睛概率的几条基本性质
(1)互斥事件的定义可以推广到n个事件中,如果事件A1,A2,…,An彼此互斥,那么P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
(2)在求某些稍复杂的事件的概率时,可将其分解为一些概率较易求的彼此互斥的事件,化整为零,化难为易.
(3)计算“至少”“至多”等问题的概率
已知两个随机事件A,B,它们的概率分别为P(A),P(B),则2.题型一 事件关系的判断 判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.
从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取一张.
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.
[思路探索] 结合事件的有关概念判断即可.【例1】解 (1)是互斥事件,不是对立事件.
理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.
(2)既是互斥事件,又是对立事件.
理由是:从40张扑克牌中任意抽取1张.“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生, 且其中必有一个发生,所以它们既是互斥事件,又是对立事件.
(3)不是互斥事件,当然不可能是对立事件.
理由是:从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得点数为10,因此,二者不是互斥事件,当然不可能是对立事件.规律方法 判断事件间的关系时,一是要考虑试验的前提条件,无论是包含、相等,还是互斥、对立,其发生的条件都是一样的,二是考虑事件间的结果是否有交事件,可考虑利用Venn图分析,对于较难判断关系的,也可列出全部结果,再进行分析. 某县城有甲、乙两种报纸供居民订阅,记事件A为“只订甲报”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报”,事件E为“一种报纸也不订”.判断下列事件是不是互斥事件;如果是,再判断它们是不是对立事件:
(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.
解 (1)由于事件C“至多订一种报纸”中包括“只订甲报”,即事件A与事件C有可能同时发生,故A与C不是互斥事件.
(2)事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故事件B与E是互斥事件;由于事件B发生会导致事件E一定不发生,且事件E发生会导致事件B一定不发生,故B与E还是对立事件.【变式1】
(3)事件B“至少订一种报纸”中包括“只订乙报”,即有可能“不订甲报”,也就是说事件B和事件D有可能同时发生,故B与D不是互斥事件.
(4)事件B“至少订一种报纸”中包括“只订甲报”“只订乙报”“订甲、乙两种报”.事件C“至多订一种报纸”中包括“一种报纸也不订”“只订甲报”“只订乙报”.由于这两个事件可能同时发生,故B与C不是互斥事件.
(5)由(4)的分析,事件E“一种报纸也不订”仅仅是事件C中的一种可能情况,事件C与事件E可能同时发生,故C与E不是互斥事件.
某商场有奖销售中,购满100元商品得1张奖券,多购多得,1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
[思路探索] 明确事件的特征、分析事件间的关系,根据互斥事件或对立事件求解.
题型二 互斥、对立事件的概率【例2】规律方法 解决此类问题,首先应结合互斥事件和对立事件的定义分析出是不是互斥事件或对立事件,再选择概率公式进行计算. 2011年10月1日某购物中心举行“庆国庆回报顾客”的超低价购物有礼活动,某人对购物中心交款处排队等候付款的人数及其概率统计如下:【变式2】求:(1)至多30人排队的概率;
(2)至少30人排队的概率.
解 (1)记“没有人排队”为事件A,“20人排队”为事件B,“30人排队”为事件C.A,B,C三个事件彼此互斥.所以至多30人排队的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)记“至少30人排队”为事件D,由(1)知事情D与事件A∪B是对立事件,则至少30人排队的概率为P(D)=1-P(A∪B)=1-P(A)-P(B)=1-0.1-0.16=0.74.题型三 将复杂事件分解为互斥事件
和对立事件,再利用公式求解【例3】求:(1)“取出1球为红球或黑球”的概率;
(2)“取出1球为红球或黑球或白球”的概率.
审题指导 应用互斥事件、对立事件的概率公式求概率. 【题后反思】 求复杂事件的概率通常有两种方法:一是将所求事件的概率转化为彼此互斥的事件的和的概率;二是先去求对立事件的概率,再求所求事件的概率.【变式3】转化与化归思想的核心把陌生问题转化为熟悉的问题,事实上解题过程就是一个缩小已知与求解的差异的过程,是求解系统趋近于目标系统的过程.
在本节中运用加法公式及对立思想把复杂概率分解为易求解的概率问题.方法技巧 转化与化归思想在和事件中的应用 某地区年降水量(单位:mm)在下列范围内的概率如下表:【示例】(1)求年降水量在[800,1 200)范围内的概率;
(2)如果年降水量≥1 200 mm就可能发生涝灾,求该地区可能发生涝灾的概率.解 (1)记事件A为“年降水量在[800,1 000)”,B为“年降水量在[1 000,1 200)”,则所求事件为互斥事件A和B的并事件,所以年降水量在[800,1 200)范围内的概率是
P(A∪B)=P(A)+P(B)=0.26+0.38=0.64.
(2)记事件C为“年降水量在[1 200,1 400)”,事件D为“年降水量在[1 400,1 600)”,则所求事件为互斥事件C和D的并事件,所以年降水量≥1 200 mm的概率是P(C∪D)=P(C)+P(D)=0.16+0.08=0.24.
方法点评 当一个事件的概率较难求解,而对立事件易求时,应用对立事件公式转化成求对立事件的概率,或是转化成几个易求解的互斥事件的和事件去求解.单击此处进入 活页规范训练