北师大版九年级数学下册3.4圆周角和圆心角的关系教学设计(2课时)

文档属性

名称 北师大版九年级数学下册3.4圆周角和圆心角的关系教学设计(2课时)
格式 zip
文件大小 713.1KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2022-05-02 20:39:49

文档简介

第三章 圆
《圆心角和圆周角的关系(第2课时)》
教学设计说明
1. 学生起点分析
学生的知识技能基础:学生在本节的第一课时,通过探索,已经学习了圆心角和圆周角的关系,并对定理进行了严密的证明,通过一系列简单的练习对这个关系熟悉,具备了灵活应用本关系解决问题 的基本能力.
学生活动经验基础:在相关知识的学习过程中,学生已经经历了化归和分类讨论的数学方法,获得了得到数学结论的过程中,可以采用的数学方法解决的经验,同时在学习过程中也经历了合作学习的过程,具有了一定的合作学习的能力,具备了一定的合作和交流的能力.
2. 教学任务分析
本节共分2个课时,这是第2课时,主要研究圆周角定理的2个推论,并利用这些解决一些简单问题.具体地说,本节课的教学目标为:
知识与技能:
1.掌握圆周角定理的2个推论的内容.
2.会熟练运用推论解决问题.
过程与方法
1.培养学生观察、分析及理解问题的能力.
2.在学生自主探索推论的过程中,经历猜想、推理、验证等环节,获得正确学习方式.
情感态度与价值观:培养学生的探索精神和解决问题的能力.
教学重点:圆周角定理的几个推论的应用.
教学难点:理解几个推论的“题设”和“结论”
3. 教学设计分析
本节课设计了七个教学环节:课前复习——新课学习(一)——推论的应用(一)——新课学习(二)——推论的应用(二)——方法小结——作业布置.
第一环节 课前复习
活动内容:
1.求图中角X的度数:
x= x=
2.求图中角X的度数:
∠ABF=20°,∠FDE=30°
x= x=
活动目的:通过两个简单的练习,复习第一课时学习的圆周角和圆心角的关系.练习1是复习定理:圆周角的度数等于它所对弧上的圆心角的度数的一半;练习2是复习定理:同弧或等弧所对的圆周角相等.
活动的注意事项:两个题目相对比较简单,关键在于引导学生学会看图,从图中看出圆心角和圆周角的一些关系.第2题的第2个图难度稍大,学生不易一眼看出个中关系,需要借助辅助线,连接CF,把x分解为2个角,使得问题简单解决,本题需要重点讲解,体现读图和应用的灵活性.
第二环节 新课学习(一)
活动内容:
(1)观察图,BC是⊙O的直径,它所对的圆周角有什么特点?你能证明吗?
首先,让学生明确,“它所对的圆周角”指的是哪个角?(∠BAC)
然后,让学生猜想,这个角的特点,并拿量角器实际测量,看看猜测是否准确.(∠BAC是一个直角)
最后,让学生自行考虑进行证明的方法.引导应用圆周角和圆心角关系定理进行证明.
解:直径BC所对的圆周角∠BAC=90°
证明:
∵BC为直径
∴∠BOC=180°
∴(圆周角的度数等于它所对弧上的圆心角的度数的一半)
(2)观察图,圆周角∠BAC=90°,弦BC是直径吗?为什么?
首先,让学生猜想结果;
然后,再让学生尝试进行证明.
解:弦BC是直径.
连接OC、OB
∵∠BAC=90°
∴∠BOC=2∠BAC=180°
(圆周角的度数等于它所对弧上的圆心角的度数的一半)
∴B、O、C三点在同一直线上
∴BC是⊙O的一条直径
(3)从上面的两个议一议,得出推论:
直径所对的圆周角是直角;90°的圆周角所对的弦是直径.
几何表达为:
直径所对的圆周角是直角;
∵BC为直径 ∴∠BAC=90°
90°的圆周角所对的弦是直径.
∵∠BAC=90° ∴BC为直径
活动目的:本环节的设置,需要学生经历猜想——实验验证——严密证明,这三个基本的环节,从而推导出从圆心角和圆周角关系定理推导出的两个推论.
活动的注意事项:在(2)证明弦BC是直径的问题中,学生往往容易进入误区,直接连接BC,认为BC过点O,则直接说BC是直径,这样的说理是错误的,应该是连接OB和OC,再证明三点共线.在此需要特别指出注意:此处不能直接连接BC,思路是先保证过点O,再证三点共线.对于三点共线,学生也可能忘记,需要老师从旁提醒.
第三环节 推论的应用(一)
活动内容:
(1)小明想用直角尺检查某些工件是否恰好为半圆形.下面所示的四种圆弧形,你能判断哪个是半圆形?为什么?
(2)如图,⊙O的直径AB=10cm,C为⊙O上的一点,∠B=30°,求AC的长.
解∵AB为直径
∴∠BCA=90°
在Rt△ABC中,
∠ABC=30°,AB=10

活动目的:在学习了推论“直径所对的圆周角是直角;90°的圆周角所对的弦是直径.”立刻安排两个简单练习让学生进行实际应用,目的的增加学生对这两个推论的熟练程度,并学习灵活应用这两个推论解决问题.第1题是实际问题,具有现实生活的实际意义,用利于提高学生应用数学解决实际问题的能力.
活动的注意事项:第2题练习中,涉及“在直角三角形中30°所对的直角边等于斜边的一半”这个定理的使用,估计学生不容易想到应用这个定理,从而无法解决这个问题,让学生思考后,发现无法联系到本定理,则需要老师从旁适时提醒.
第四环节 新课学习(二)
活动内容:
(一)如图,A,B,C,D是⊙O上的四点,AC为⊙O的直径,请问∠BAD与∠BCD之间有什么关系?为什么?
首先:引导学生进行猜想;
然后:让学生进行证明.
解:∠BAD与∠BCD互补
∵AC为直径
∴∠ABC=90°,∠ABC=90°
∵∠ABC+∠BCD+∠ABC+∠BAD=360°
∴∠BAD+∠BCD=180°
∴∠BAD与∠BCD互补
(二)如图,C点的位置发生了变化,∠BAD与∠BCD之间有的关系还成立吗?为什么?
首先:让学生猜想结论;
然后:让学生拿出量角器进行度量,实验验证猜想结果;
最后:让学生利用所学知识进行严密证明.
解:∠BAD与∠BCD的关系仍然成立
连接OB,OD
∵,(圆周角的度数等于它所对弧上圆心角的一半)
∵∠1+∠2=360°
∴∠BAD+∠BCD=180°
∴∠BAD与∠BCD互补
(三)圆内接四边形概念与性质探索
如图,两个四边形ABCD有什么共同的特点?
得出定义:四边形ABCD的的四个顶点都在⊙O上,这样的四边形叫做圆内接四边形;
这个圆叫做四边形的外接圆.
通过议一议环节,我们我们发现∠BAD与∠BCD之间有什么关系?
推论:圆内接四边形的对角互补.
几何语言:
∵四边形ABCD为圆内接四边形
∴∠BAD+∠BCD=180°(圆内接四边形的对角互补)
活动目的:本活动环节,目的是通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生再次经历猜想,实验,证明这三个探索问题的基本环节,得到一般的规律.规律探索后,再引入相关概念,得出相关推论.
活动的注意事项:在(二)的探索中,学生会陷入∠BAD和∠BCD所对圆心角混淆的误区,以及不会对这两个圆心角的角度进行表达.其次,在两个图形中四边形ABCD的共同特征探索方面,学生可能会简单问题复杂化,想到其他比较复习的特征,该给予肯定,但要引导学生不要把问题向复杂方向思考.
第五环节 推论的应用(二)
活动内容:
如图,∠DCE是圆内接四边形ABCD的一个外角,∠A与∠DCE的大小有什么关系?
让学生自主经历猜想,实验验证,严密证明三个环节
解:∠A=∠CDE
∵四边形ABCD是圆内接四边形
∴∠A+∠BCD=180°(圆内角四边形的对角互补)
∵∠BCD+∠DCE=180°
∴∠A=∠DCE
活动目的:通过一个练习,让学生自主经历解决问题的三个基本环节,从而巩固本节课学习方法的应用.
活动的注意事项:个别学习能力低下的学生会不懂得思考问题的方式和方法,让学生做的时候,适当关注这部分学生,作出及时引导.
第六环节 方法小结
活动内容:
议一议:在得出本节结论的过程中,你用到了哪些方法?请举例说明,并与同伴进行交流.
让学生自主总结交流,最后老师再作方法归纳总结.
方法1:解决问题应该经历“猜想——实验验证——严密证明”三个基本环节.
方法2:从特殊到一般的研究方法,对特殊图形进行研究,从而改变特殊性,得出一般图形,总结一般规律.
活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结.
活动的注意事项:这里体现学生的总结和交流能力,只要学生是自己总结的,都应该给与鼓励和肯定,最后老师再作总结性的发言.
第七环节 作业布置
随堂练习3.在圆内接四边形ABCD中,∠A与∠C的度数之比为4:5,求∠C的度数.
解:∵四边形ABCD是圆内接四边形
∴∠A+∠C=180°(圆内角四边形的对角互补)
∵∠A:∠C=4:5

即∠C的度数为100°.
习题3.5
1.如图,在⊙O中,∠BOD=80°,求∠A和∠C的度数.
解:∵∠BOD=80°

(圆周角的度数等于它所对弧上的圆心角的度数的一半)
∵四边形ABCD是圆内接四边形
∴∠DAB+∠BCD=180°
∴∠BCD=180°-40°=140°
(圆内接四边形的对角互补)
2.如图,AB是⊙O的直径,∠C=15°,求∠BAD的度数.
(方法一)解:连接BC
∵AB为直径
∴∠BCA=90°
(直径所对的圆周角为直角)
∴∠BCD+∠DCA=90°,∠ACD=15°
∴∠BCD=90°-15°=75°
∴∠BAD=∠BCD=75°(同弧所对的圆周角相等)
(方法二)解:连接OD
∵∠ACD=15°
∴∠AOD=2∠ACD=30°
(圆周角的度数等于它所对弧上的圆心角的度数的一半)
∵OA=OD
∴∠OAD=∠ODA
又∵∠AOD+∠OAD+∠ODA=180°
∴∠BAD=75°
3.如图,分别延长圆内接四边形ABCD的两组对边相交于点E,F,若∠E=40°,∠F=60°,求∠A的度数.
解:∵四边形ABCD是圆内接四边形∴∠ADC+∠CBA=180°
(圆内接四边形的对角互补)
∵∠EDC+∠ADC=180°,
∠EBF+∠ABE=180°
∴∠EDC+ ∠EBF=180°
∵∠EDC=∠F+∠A,∠EBF=∠E+∠A
∴∠F+∠A+∠E+∠A=180°
∴∠A=40°
4.如图,⊙O1与⊙O2都经过A,B两点,且点O2在⊙O1上,点C是弧AO2B上的一点(点C不与A,B重合),AC的延长线交⊙O2于点P,连接AB,BC,BP.
(1)根据题意将图形补充完整;
(2)当点C在弧AO2B上运动时,图中大小不变的角有哪些?(将符合要求的角都写出来)
解:大小不变的角有:
∠ACB
∠APB
∠BCP
4. 教学设计反思
1.根据学生特点灵活应用教案
本教案的编写,学生的能力是相对较高的,因此课堂的容量会比较大,如果碰到学习能力不足的学生群体,则要根据实际情况进行调整,可以把第三环节的应用减少为一道题目,或者合并到第五环节两个应用一起进行.
2.让学生有充分的探索机会,经历猜想,实验证明,严密证明的环节
学生往往会直接进行证明,这对于简单问题可行,对于复杂问题就不好做了,因此要让学生经历猜想的过程,并且需要实际动手,拿出量角器进行实际度量,验证猜想,最后再进行严密的几何证明.
1
2
1 / 10第三章 圆
《圆周角和圆心角的关系(第1课时)》
教学设计说明
一、学生起点分析
学生的知识技能基础:学生在本章的第二节课中,通过探索,已经学习了同圆或等圆中弧、弦和圆心角的关系,并对定理进行了严密的证明,通过一系列简单的练习对这个关系熟悉,具备了灵活应用本关系解决问题的基本能力.
学生活动经验基础:在之前的学习过程中,学生已经经历了“猜想-验证”、分类讨论的数学方法,获得了在得到数学结论的过程中采用数学方法解决的经验,同时在学习过程中也经历了合作学习的过程,具有了一定的合作学习的能力,具备了一定的合作和交流的能力.
二、教学任务分析
本节共分2个课时,这是第1课时,主要内容是圆周角的定义以及探究圆周角定理,并利用定理解决一些简单问题.具体地说,本节课的教学目标为:
知识与技能
1.理解圆周角定义,掌握圆周角定理.
2.会熟练运用定理解决问题.
过程与方法
1.培养学生观察、分析及理解问题的能力.
2.在学生自主探索定理的过程中,经历猜想、推理、验证等环节,获得正确学习方式.
情感态度与价值观:培养学生的探索精神和解决问题的能力.
教学重点:圆周角定理及其应用.
教学难点:圆周角定理证明过程中的“分类讨论”思想的渗透.
三、教学设计分析
本节课设计了七个教学环节:知识回顾——探究新知1——定义的应用——探究新知2——方法小结——定理的应用——课堂小结(作业布置).
第一环节 知识回顾
活动内容:
1.圆心角的定义 ——顶点在圆心的角叫圆心角
2.圆心角的度数和它所对的弧的度数有何关系
 如图:∠AOB  弧AB的度数
3.在同圆或等圆中,如果两个圆心角、两条 、两条 中有一组量相等,那么它们所对应的其余各组量都分别相等.
活动目的:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.练习1是复习圆心角定义:顶点在圆心的角叫圆心角;练习2和练习3是复习定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
活动的注意事项:题目以复习概念和定理为主,特别是定理当中的前提条件“同圆或等圆”,需要再特别向学生强调一遍,同时要学生明白何为三组量中其中一组量相等,那么其余各组量也分别相等.
第二环节 探究新知1
活动内容:
(1)问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况
类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.
活动目的:本环节的设置,需要学生类比圆心角的定义,采用分类讨论和类比的思想方法得出圆周角的定义.
活动的注意事项:问题当中的角的顶点位置发生变化可得到几种情况,其实是点和圆的位置关系知识点的应用,老师在此应注意知识之间的联系,达到触类旁通的目的.
第三环节 定义的应用
活动内容:
(1)练习、如图,指出图中的圆心角和圆周角
解:圆心角有∠AOB、∠AOC、∠BOC
圆周角有∠BAC 、∠ABC、∠ACB
活动目的:在学习了圆周角的定义后,为了下面学习圆周角
的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.
活动的注意事项:图中圆里有3条半径和3条弦,当学生讲出正确答案后,则需要老师从旁总结寻找圆心角和圆周角的方法.寻找圆心角关注的是半径,任意两条半径所夹的角就是一个圆心角,个数由半径的条数决定.寻找圆周角则应关注弦和弦与圆的交点,任意两弦和两弦的交点组成一个圆周角,数圆周角关键是看弦与圆的交点,看以这个交点为顶点能引出多少条弦,每两条弦所夹的即是一个圆周角,数完一个交点后,再数另一个交点.这里要注意,因为半径AO没有延长,所以∠OAB严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO延长与圆相交后,就会形成圆周角了,所以这里要特别注意.
第四环节 探究新知2
活动内容:
(一)问题提出:当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系
教师提示:类比圆心角探知圆周角
在同圆或等圆中,相等的弧所对的圆心角相等.
在同圆或等圆中,相等的弧所对的圆周角有什么关系?
为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.
(二)做一做:如图,∠AOB=80°,(1)请你画出几个 所对的圆周角,这几个圆周角的大小有什么关系?
教师提示:思考圆周角和圆心角有几种不同的位置关系?三种:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.
(2)这些圆周角与圆心角∠AOB的大小有什么关系 ∠AOB=2∠ACB
(三)议一议:改变圆心角∠A0B的度数,上述结论还成立吗?成立
(四)猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
符号语言:
(五)证明定理:
已知:如图,∠ACB是 所对的圆周角,∠AOB是 所对的圆心角,
求证:
分析:1.首先考虑一种特殊情况:
当圆心(O)在圆周角(∠ACB)的一边(BC)上时,圆周角∠ACB与圆心角∠AOB的大小关系.
∵∠AOB是△ACO的外角
∴∠AOB=∠C+∠A
∵OA=OC
∴∠A=∠C
∴∠AOB=2∠C
2.当圆心(O)在圆周角(∠ACB)的内部时,圆周角∠ACB与圆心角∠AOB的大小关系会怎样
老师提示:能否转化为1的情况
过点C作直径CD.由1可得:
3.当圆心(O)在圆周角(∠ACB)的外部时,圆周角∠ACB与圆心角∠AOB的大小关系会怎样
老师提示:能否也转化为1的情况
过点C作直径CD.由1可得:
活动目的:本活动环节,首先有一个情景引出探究的问题,然后通过类比得出探究圆周角定理的方法,再通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理.
活动的注意事项:本环节有不少的数学思想方法,教师在教学中要注意逐一渗透.在(一)中注意渗透类比思想,在(二)中注意渗透“分类讨论”思想,在(三)中注意渗透“特殊到一般”思想,在(四)(五)中注意渗透“猜想,试验,证明”的探究问题一般步骤.
第五环节 方法小结
活动内容:
思想方法:分类讨论,“特殊到一般”的转化
活动目的:通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用.
活动的注意事项:多让学生用自己的语言表述当中用到的方法,然后教师再进行深加工.
第六环节 定理的应用
活动内容:
问题回顾:当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系
连接AO、CO,
由此得出定理:同弧或等弧所对的圆周角相等.
活动目的:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理.
活动的注意事项:这里要注意引导学生学以致用,通过作辅助线添加圆心角,把问题转化到定理的直接应用上.还要注意引导学生对得出的结论加以总结,从而得出新的定理.
第七环节 课堂小结
活动内容:
(一) 这节课主要学习了两个知识点:
1.圆周角定义.
2.圆周角定理及其定理应用.
(二)方法上主要学习了圆周角定理的证明,渗透了类比,“特殊到一般”的思想方法和分类讨论的思想方法.
(三)圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点,望同学们灵活运用.
活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结.
活动的注意事项:这里体现学生的总结和交流能力,只要学生是自己总结的,都应该给与鼓励和肯定,最后老师再作总结性的发言.
第八环节:附课后练习答案
随堂练习1.如图,在⊙O中,∠BOC=50°,求∠BAC的大小
解:在⊙O中,∠BOC=50°
2.如图,哪个角与∠BAC相等,你还能找到那些相等的角?
解:∠BAC=∠BDC
∠ADB=∠ACB
∠CAD=∠CBD
∠ABD=∠ACD
习题
1.如图,OA、OB、OC都是⊙O的半径,∠AOB=2 ∠BOC,∠ACB与∠BAC的大小有什么关系,为什么?
解: ∠ACB = 2 ∠BAC,理由:
又∵∠AOB=2 ∠BOC
即∠ACB = 2∠BAC
2.如图,A、B、C、D是⊙O上的四点,且∠BCD=100°,求∠BOD与∠BAD的大小
解:∵∠BCD=100°
∴优弧所对的圆心角∠BOD=2∠BCD=200°
∴劣弧所对的圆心角∠BOD=36O°-200°=160°
3.为什么电影院的作为排列呈弧形,说一说这设计的合理性.
答:有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.
4.船在航行过程中,船长通过测定角数来确定是否遇到暗礁,
如图,A、B表示灯塔,暗礁分布在经过A、B两点的一个圆形
区域内,优弧AB上任一点C都是有触礁危险的临界点,
∠ACB就是“危险角”,当船位于安全区域时,∠α与“危险角”
有怎样的大小关系?
解:当船位于安全区域时,即船位于暗礁区域外(即⊙O外) ,与两个灯塔的夹角∠α小于“危险角” .
四、教学设计反思
1. 根据学生特点灵活应用教案
针对编者学校学生的特点,大部分学生能力相对较高,因此课堂的容量会比较大,而且在教学过程中渗透的思想方法也较多,如果碰到学习能力不足的学生群体,则要根据实际情况进行调整,注意突出渗透分类讨论的思想方法和体会探索问题的一般步骤即可.
2. 让学生有充分的探索机会,经历猜想,试验,证明的环节
学生往往会直接进行证明,这对于简单问题可行,对于复杂问题就不好做了,因此要让学生经历猜想的过程,并且需要实际动手,拿出量角器进行实际度量,验证猜想,最后再进行严密的几何证明.
圆心角 圆周角
AB

AB

AB

PAGE
1 / 9