北师大新版七年级(下)《第4章 三角形》单元测试卷(1)
一、选择题(共10小题)
1.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
2.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )
A. B.
C. D.
3.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )
A.150° B.180° C.210° D.225°
4.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )
A.1 B.2 C.3 D.8
5.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )
A.三角形的稳定性 B.两点之间线段最短
C.两点确定一条直线 D.垂线段最短
6.如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )
A.19.2° B.8° C.6° D.3°
7.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为( )
A.20° B.30° C.40° D.50°
8.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是( )
A.8 B.9 C.10 D.11
9.如图中三角形的个数是( )
A.6 B.7 C.8 D.9
10.如图,下列条件中,不能证明△ABD≌△ACD的是( )
A.BD=DC,AB=AC B.∠ADB=∠ADC,∠BAD=∠CAD
C.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC
二、填空题(共10小题)
11.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D= 度.
12.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第 块去配,其依据是根据定理 (可以用字母简写)
13.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:
①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;
②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;
③作射线AG,交BC边于点D,则∠ADC的度数为 .
14.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B= .
15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .
16.如图所示的方格中,∠1+∠2+∠3= 度.
17.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为 厘米/秒.
18.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是 .
19.如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .
20.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=4,G是△ABC重心,则S△AGC= .
三、解答题(共10小题)
21.如图,已知∠BAD=∠CAE,AB=AD,AC=AE.求证:∠B=∠D.
22.如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.
23.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠ADE=155°,求∠B的度数.
24.如图所示,已知线段AB,点P是线段AB外一点.
(1)按要求画图,保留作图痕迹;
①作射线PA,作直线PB;
②延长线段AB至点C,使得AC=2AB,再反向延长AC至点D,使得AD=AC.
(2)若(1)中的线段AB=2cm,求出线段BD的长度.
25.已知:如图,点E、F在CD上,且∠A=∠B,AC∥BD,CF=DE.
求证:△AEC≌△BFD.
26.如图所示,已知AD是△ABC的边BC上的中线.
(1)作出△ABD的边BD上的高.
(2)若△ABC的面积为10,求△ADC的面积.
(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.
27.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm.求:
(1)△ABC的面积;
(2)CD的长;
(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积.
28.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.
(1)求证:∠A+∠C=∠B+∠D;
(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.
①以线段AC为边的“8字型”有 个,以点O为交点的“8字型”有 个;
②若∠B=100°,∠C=120°,求∠P的度数;
③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.
29.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:
①在河流的一条岸边B点,选对岸正对的一棵树A;
②沿河岸直走20m有一树C,继续前行20m到达D处;
③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;
④测得DE的长为5米.
求:(1)河的宽度是多少米?
(2)请你证明他们做法的正确性.
30.如图,在△BCD中,BC=4,BD=5,
(1)求CD的取值范围;
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.
第1页(共1页)北师大新版七年级(下)《第4章 三角形》单元测试卷(1)
参考答案与试题解析
一、选择题(共10小题)
1.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵AD是△ABC的中线,
∴BD=CD,又∠CDE=∠BDF,DE=DF,
∴△BDF≌△CDE,故④正确;
由△BDF≌△CDE,可知CE=BF,故①正确;
∵AD是△ABC的中线,∴△ABD和△ACD等底等高,
∴△ABD和△ACD面积相等,故②正确;
由△BDF≌△CDE,可知∠FBD=∠ECD
∴BF∥CE,故③正确.故选:D.
2.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )
A. B.
C. D.
【解答】解:B,C,D都不是△ABC的边BC上的高,
故选:A.
3.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )
A.150° B.180° C.210° D.225°
【解答】解:
由题意得:AB=ED,BC=DC,∠D=∠B=90°,
∴△ABC≌△EDC(SAS),
∴∠BAC=∠1,
∠1+∠2=180°.
故选:B.
4.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )
A.1 B.2 C.3 D.8
【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,
即2<a<8,
即符合的只有3,
故选:C.
5.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )
A.三角形的稳定性 B.两点之间线段最短
C.两点确定一条直线 D.垂线段最短
【解答】解:根据三角形的稳定性可固定窗户.故选:A.
6.如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )
A.19.2° B.8° C.6° D.3°
【解答】解:∵∠ABC与∠ACD的平分线相交于点A1,
∴∠ABC=2∠A1BC,∠A1CD=∠ACD
根据三角形的外角的性质得,∠A1CD=(∠ABC+∠A)=(2∠A1BC+∠A)=∠A1BC+∠A,根据三角形的外角的性质得,∠A1CD=∠A1BC+∠A1,∴∠A1=∠A
同理:∠A2=∠A1,∴∠A2=∠A1=×∠A=∠A
同理:∠A3=∠A
∠A4=∠A,
∠A5=∠A=×96°=3°,
故选:D.
7.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为( )
A.20° B.30° C.40° D.50°
【解答】解:∵BD平分∠ABC,∴∠ABD=∠DBC=20°,∴∠ABC=40°,
∵∠ACB=90°,∴∠A=90°﹣∠ABC=90°﹣40°=50°,
∵CD∥AB,∴∠ACD=∠A=50°,
故选:D.
8.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是( )
A.8 B.9 C.10 D.11
【解答】解:作DM⊥AC于M,DN⊥AB于N.
∵AD平分∠BAC,DM⊥AC于M,DN⊥AB于N,
∴DM=DN,
∴S△ABD:S△ADC=BD:DC= AB DN: AC DM=AB:AC=2:3,
设△ABC的面积为S.则S△ADC=S,S△BEC=S,
∵△OAE的面积比△BOD的面积大1,
∴△ADC的面积比△BEC的面积大1,
∴S﹣S=1,
∴S=10,
故选:C.
9.如图中三角形的个数是( )
A.6 B.7 C.8 D.9
【解答】解:∵图中三角形有:△ECA,△EBD,△FBA,△FCD,△AFD,△ABD,△ACD,△AED,
∴共8个.
故选:C.
10.如图,下列条件中,不能证明△ABD≌△ACD的是( )
A.BD=DC,AB=AC B.∠ADB=∠ADC,∠BAD=∠CAD
C.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC
【解答】解:A、BD=DC,AB=AC,再加上公共边AD=AD可利用SSS定理判定△ABD≌△ACD,故此选项不合题意;
B、∠ADB=∠ADC,∠BAD=∠CAD再加上公共边AD=AD可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
C、∠B=∠C,∠BAD=∠CAD再加上公共边AD=AD可利用AAS定理判定△ABD≌△ACD,故此选项不合题意;
D、∠B=∠C,BD=DC再加上公共边AD=AD,没有ASS定理判定△ABD≌△ACD,故此选项符合题意;
故选:D.
二、填空题(共10小题)
11.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D= 25 度.
【解答】解:∵∠ACE=∠A+∠ABC,
∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,
又BD平分∠ABC,CD平分∠ACE,
∴∠ABD=∠DBE,∠ACD=∠ECD,
∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,
∴∠A=2∠D,
∵∠A=50°,
∴∠D=25°.
故答案为:25.
12.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第 ③ 块去配,其依据是根据定理 ASA (可以用字母简写)
【解答】解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第③块.
故答案为:③; ASA.
13.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:
①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;
②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;
③作射线AG,交BC边于点D,则∠ADC的度数为 65° .
【解答】解:解法一:连接EF.
∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,
∴AF=AE;
∴△AEF是等腰三角形;
又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;
∴AG是线段EF的垂直平分线,
∴AG平分∠CAB,
∵∠ABC=40°
∴∠CAB=50°,
∴∠CAD=25°;
在△ADC中,∠C=90°,∠CAD=25°,
∴∠ADC=65°(直角三角形中的两个锐角互余);
解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,
∵∠CAB=50°,
∴∠CAD=25°;
在△ADC中,∠C=90°,∠CAD=25°,
∴∠ADC=65°(直角三角形中的两个锐角互余);
故答案是:65°.
14.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B= 50° .
【解答】解:∵AE平分∠BAC,
∴∠1=∠EAD+∠2,
∴∠EAD=∠1﹣∠2=30°﹣20°=10°,
Rt△ABD中,∠B=90°﹣∠BAD
=90°﹣30°﹣10°=50°.
故答案为50°.
15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55° .
【解答】解:∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠1=∠EAC,
在△BAD和△CAE中,
∴△BAD≌△CAE(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
故答案为:55°.
16.如图所示的方格中,∠1+∠2+∠3= 135 度.
【解答】解:如图,根据网格结构可知,
在△ABC与△ADE中,,
∴△ABC≌△EDA(SSS),
∴∠1=∠DAE,
∴∠1+∠3=∠DAE+∠3=90°,
又∵AD=DF,AD⊥DF,
∴△ADF是等腰直角三角形,
∴∠2=45°,
∴∠1+∠2+∠3=90°+45°=135°.
故答案为:135.
17.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为 2或3.2 厘米/秒.
【解答】解:∵AB=16cm,BC=10cm,点D为AB的中点,
∴BD=×16=8cm,
设点P、Q的运动时间为t,则BP=2t,
PC=(10﹣2t)cm
①当BD=PC时,10﹣2t=8,
解得:t=1,
则BP=CQ=2,
故点Q的运动速度为:2÷1=2(厘米/秒);
②当BP=PC时,∵BC=10cm,
∴BP=PC=5cm,
∴t=5÷2=2.5(秒).
故点Q的运动速度为8÷2.5=3.2(厘米/秒).
故答案为:2或3.2.
18.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是 3<c<7 .
【解答】解:由题意,得
5﹣2<c<5+2,
即3<c<7.
故答案为:3<c<7.
19.如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= 180° .
【解答】解:由三角形的外角性质得,∠1=∠B+∠F+∠C+∠G,
∠2=∠A+∠D,
由三角形的内角和定理得,∠1+∠2+∠E=180°,
所以,∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.
故答案为:180°.
20.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=4,G是△ABC重心,则S△AGC= 4 .
【解答】解:延长AG交BC于E.
∵∠BAC=90°,AB=6,AC=4,
∴S△ABC= AB AC=12,
∵G是△ABC的重心,
∴AG=2GE,BE=EC,
∴S△AEC=×12=6,
∴S△AGC=×S△AEC=4,
故答案为4.
三、解答题(共10小题)
21.如图,已知∠BAD=∠CAE,AB=AD,AC=AE.求证:∠B=∠D.
【解答】证明:∵∠BAD=∠CAE,
∴∠BAC=∠DAE.
∵AB=AD,AC=AE,
∴△ABC≌△ADE(SAS).
∴∠B=∠D.
22.如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.
【解答】解:∵∠ABC=∠C=70°,BD平分∠ABC,
∴∠DBC=35°,
∴∠ADB=∠C+∠DBC=70°+35°=105°.
23.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠ADE=155°,求∠B的度数.
【解答】解:∵∠ADE=155°,∠ADE+∠CDE=180°,
∴∠CDE=25°.
∵DE∥BC,
∴∠C=∠CDE=25°.
在△ABC中,∠A=90°,
∴∠B+∠C=90°,
∴∠B=90°﹣25°=65°.
24.如图所示,已知线段AB,点P是线段AB外一点.
(1)按要求画图,保留作图痕迹;
①作射线PA,作直线PB;
②延长线段AB至点C,使得AC=2AB,再反向延长AC至点D,使得AD=AC.
(2)若(1)中的线段AB=2cm,求出线段BD的长度.
【解答】解:(1)射线PA,直线PB、线段AC、AD为所作;
(2)∵AC=2AB=2×2=4cm,
∴AD=AC=4cm,
∴BD=AD+AB=4+2=6(cm).
25.已知:如图,点E、F在CD上,且∠A=∠B,AC∥BD,CF=DE.
求证:△AEC≌△BFD.
【解答】证明:∵AC∥BD,
∴∠C=∠D,
∵CF=DE,
∴CF+EF=DE+EF,
即CE=DF,
在△AEC和△BFD中,
∴△AEC≌△BFD(AAS).
26.如图所示,已知AD是△ABC的边BC上的中线.
(1)作出△ABD的边BD上的高.
(2)若△ABC的面积为10,求△ADC的面积.
(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.
【解答】解:(1)如图所示:
(2)∵AD是△ABC的边BC上的中线,△ABC的面积为10,
∴△ADC的面积=△ABC的面积=5.
(3)∵AD是△ABC的边BC上的中线,△ABD的面积为6,
∴△ABC的面积为12,
∵BD边上的高为3,
∴BC=12×2÷3=8.
27.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm.求:
(1)△ABC的面积;
(2)CD的长;
(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积.
【解答】解:(1)∵∠ACB=90°,BC=12cm,AC=5cm,
∴S△ABC=BC×AC=30cm2,
(2)∵S△ABC=AB×CD=30cm2,
∴CD=30÷AB=cm,
(3)S△ABE=S△ABC=×30=15cm2
28.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.
(1)求证:∠A+∠C=∠B+∠D;
(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.
①以线段AC为边的“8字型”有 3 个,以点O为交点的“8字型”有 4 个;
②若∠B=100°,∠C=120°,求∠P的度数;
③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.
【解答】(1)证明:在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,
∵∠AOC=∠BOD,
∴∠A+∠C=∠B+∠D;
(2)解:①3;4;
故答案为:3,4;
②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,
以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP
∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,
∵AP、DP分别平分∠CAB和∠BDC,
∴∠BAP=∠CAP,∠CDP=∠BDP,
∴2∠P=∠B+∠C,
∵∠B=100°,∠C=120°,
∴∠P=(∠B+∠C)=(100°+120°)=110°;
③3∠P=∠B+2∠C,其理由是:
∵∠CAP=∠CAB,∠CDP=∠CDB,
∴∠BAP=∠CAB,∠BDP=∠CDB,
以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,
以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP
∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),
∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).
∴2(∠C﹣∠P)=∠P﹣∠B,
∴3∠P=∠B+2∠C.
29.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:
①在河流的一条岸边B点,选对岸正对的一棵树A;
②沿河岸直走20m有一树C,继续前行20m到达D处;
③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;
④测得DE的长为5米.
求:(1)河的宽度是多少米?
(2)请你证明他们做法的正确性.
【解答】(1)解:河的宽度是5m;
(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,
在Rt△ABC和Rt△EDC中,
,
∴Rt△ABC≌Rt△EDC(ASA),
∴AB=ED,
即他们的做法是正确的.
30.如图,在△BCD中,BC=4,BD=5,
(1)求CD的取值范围;
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.
【解答】解:(1)∵在△BCD中,BC=4,BD=5,
∴5﹣4<DC<5+4,
∴1<DC<9;
(2)∵AE∥BD,∠BDE=125°,
∴∠AEC=180°﹣125°=55°,
又∵∠A=55°,
∴∠C=180°﹣∠A﹣∠AEC=180°﹣55°﹣55°=70°.
第1页(共1页)