10.2事件的相互独立性 同步练习(Word版含解析)

文档属性

名称 10.2事件的相互独立性 同步练习(Word版含解析)
格式 docx
文件大小 446.4KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-05-04 11:34:53

图片预览

文档简介

人教A版(2019)必修第二册 10.2 事件的相互独立性 同步练习
一、单选题
1.如图,“红旗-9”在国内外都被认为属于第三代防空导弹系统,其杀伤空域大,抗干扰和抗多目标饱和攻击能力强,导引系统先进(有两级指挥管制体制),最高速度4.2马赫,最大射程为200公里,射高0.5至30公里,主要攻击高空敌机或导弹,是我国高空防空导弹的杰出代表.现假设在一次实战对抗演习中,单发红旗-9防空导弹对敌方高速飞行器的拦截成功率为0.8,则两发齐射(是否成功拦截互不干扰),敌方高速飞行器被拦截的概率为( )
A.0.96 B.0.88 C.1.6 D.0.64
2.抛掷一枚质地均匀的骰子一次,记事件A为“向上的点数为奇数”,记事件B为“向上的点数为1或2”,则事件A与事件B的关系是( )
A.相互独立 B.互斥
C.既相互独立又互斥 D.既不相互独立又不互斥
3.已知某种产品的合格率是95%,合格品中的一级品率是20%.则这种产品的一级品率为
A.18% B.19% C.20% D.21%
4.抛掷一颗质地均匀的骰子,有如下随机事件:“向上的点数为”,其中,“向上的点数为偶数”,则下列说法正确的是( )
A. B. C.与互斥 D.与对立
5.某兴趣小组从包括甲、乙的小组成员中任选3人参加活动,若甲、乙至多有一人被选中的概率是,则甲、乙均被选中的概率是
A. B. C. D.
6.如果事件A,B互斥,那么( )
A.A∪B是必然事件 B.∪是必然事件
C.与一定互斥 D.与一定不互斥
7.下列事件A,B是独立事件的是(  )
A.一枚硬币掷两次,A=“第一次为正面向上”,B=“第二次为反面向上”
B.袋中有两个白球和两个黑球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”
C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”
D.A=“人能活到20岁”,B=“人能活到50岁”
8.甲乙两同学进行罚球比赛,罚中得分,罚丢不得分.已知甲乙两同学的罚球命中率分别为和,且两人的投篮结果相互独立.现甲乙两人各罚球一次,则两人得分相同的概率为( )
A. B. C. D.
9.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,灯亮的概率为( )
A. B. C. D.
10.有两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,则目标被击中的概率是( )
A.0.56 B.0.92
C.0.94 D.0.96
11.某同学上学的路上有4个红绿灯路口,假如他走到每个红绿灯路口遇到绿灯的概率为,则该同学在上学的路上至少遇到2次绿灯的概率为( )
A. B. C. D.
12.某同学从家到学校要经过三个十字路口,设各路口信号灯工作相互独立,该同学在各路口遇到红灯的概率分别为,,,则该同学从家到学校至少遇到一次红灯的概率为( )
A. B. C. D.
13.已知A与是互斥事件,且,,则等于( )
A.0.1 B.0.3 C.0.4 D.0.8
14.下列四个命题:①对立事件一定是互斥事件; ②若,为两个事件,则;③若事件,,彼此互斥,则;④若事件,满足,则,是对立事件.其中错误命题的个数是( )
A.0 B.1 C.2 D.3
15.为提高学生的身体素质,加强体育锻炼,高三(1)班A,B,C三位同学进行足球传球训练,约定:球在某同学脚下必须传出,传给另外两同学的概率均为,不考虑失球,球刚开始在A同学脚下,经过5次传球后,球回到A同学脚下的概率为( )
A. B. C. D.
二、填空题
16.如图,靶子由一个中心圆面I和两个同心圆环Ⅱ、Ⅲ构成,射手命中I、Ⅱ、Ⅲ的概率分别为0.33、0.29、0.26,则脱靶的概率是______.
17.已知随机事件A,B互为对立事件,且,则___________.
18.已知事件互相对立,且,则=_____.
三、解答题
19.某公司为了解蚌埠市用户对其产品的满意度,从蚌埠市,两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到地区用户满意度评分的频率分布直方图(如图)和地区的用户满意度评分的频数分布表(如表1).
满意度评分
频数 2 8 14 10 6
表1
满意度评分 低于70分
满意度等级 不满意 满意 非常满意
表2
(1)求图中的值,并分别求出,两地区样本用户满意度评分低于70分的频率.
(2)根据用户满意度评分,将用户的满意度分为三个等级(如表2),将频率看作概率,从,两地用户中各随机抽查1名用户进行调查,求至少有一名用户评分满意度等级为“不满意”概率.
20.今年中国共产党迎来了建党100周年,为了铭记建党历史、缅怀革命先烈、增强爱国主义情怀,某区组织了党史知识竞赛活动.在最后一轮晋级比实中,甲、乙、丙三所学校回答一道有关红色革命根据地建立时间的问题,已知甲校回答正确这道题的概率为,甲、丙两所学校都回答正确这道题的概率是,乙、丙两所学校都回答正确这道题的概率是.若各学校回答这道题是否正确是互不影响的.
(1)求乙、丙两所学校各自回答正确这道题的概率;
(2)求甲、乙、丙三所学校中不少于2所学校回答正确这道题的概率.
21.有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的(即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出条鱼,检验鱼体中的汞含量与其体重的比值(单位:),数据统计如下:
(1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的分位数;
(2)有,两个水池,两水池之间有个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过条鱼.
(ⅰ)将其中汞的含量最低的条鱼分别放入水池和水池中,若这条鱼的游动相互独立,均有的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;
(ⅱ)将其中汞的含量最低的条鱼都先放入水池中,若这条鱼均会独立地且等可能地从其中任意一个小孔由水池进入水池且不再游回水池,求这两条鱼由不同小孔进入水池的概率.
22.某居民小区有两个相互独立的安全防范系统,简称系统A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.
(1)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;
(2)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.A
根据对立事件及相互独立事件的概率公式计算可得;
【详解】
解:依题意敌方高速飞行器被拦截的概率为
故选:A
2.A
根据相互独立事件、互斥事件的知识确定正确选项.
【详解】
由于表示“向上的点数为1”,所以不是互斥事件.

所以,
所以是相互独立事件,不是互斥事件.
故选:A
3.B
由题意可知,根据一级品率在合格品率所占的比例,计算即可.
【详解】
某种产品的合格率是95%,合格品中的一级品率是20%,
一级品率为:.
故选:B.
本题考查了概率的计算,属于基础题.
4.C
对于选项中的事件,分别写出对应的基本事件构成的集合,依次分析,即可
【详解】
对于A,,,∴,故A错误;
对于B,,故B错误;
对于C,与不能同时发生,是互斥事件,故C正确;
对于D,,,与是互斥但不对立事件,故D错误;
故选:C
5.B
由事件“甲、乙至多有一人被选中”与事件“甲、乙均被选中”为对立事件,可求得答案
【详解】
由题意可知事件“甲、乙至多有一人被选中”与事件“甲、乙均被选中”为对立事件,则甲、乙均被选中的概率是.
故选:B
6.B
利用集合法判断.
【详解】
如图所示:
因为事件A,B互斥,
所以是必然事件,
故选:B.
7.A
利用相互独立事件的概念,对四个选项逐一分析排除,从而得出正确选项.
【详解】
对于A选项,两个事件发生,没有关系,故是相互独立事件.对于B选项,事件发生时,影响到事件,故不是相互独立事件.对于C选项,由于投的是一个骰子,是对立事件,所以不是相互独立事件.对于D选项,能活到岁的,可能也能活到岁,故不是相互独立事件.综上所述,本小题选A.
本小题主要考查相互独立事件的概念以及相互独立事件的识别,属于基础题.
8.B
根据题意分别计算两人得分均为0分和1分两种情况的概率,再求和即可.
【详解】
两人得分相同的情况有两种,两人得分均为0分和1分,
当两人得分均为0分时,概率为
两人得分均为1分时,概率为,
所以甲 乙两同学各罚球一次,则两人得分相同的概率为,
即甲 乙两同学各罚球一次,则两人得分相同的概率为62%.
故选:B
9.C
灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,根据概率公式得到结果.
【详解】
由题意知,本题是一个相互独立事件同时发生的概率,
灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,
这三种情况是互斥的,每一种情况中的事件是相互独立的,
灯泡不亮的概率是,
灯亮和灯不亮是两个对立事件,
灯亮的概率是,
故选:.
本题结合物理的电路考查了有关概率的知识,考查对立事件的概率和项和对立事件的概率,本题解题的关键是看出事件之间的关系,灯亮的情况比较多,需要从反面来考虑,属于中档题.
10.C
利用独立事件和对立事件的概率求解即可.
【详解】
设事件A表示:“甲击中”,事件B表示:“乙击中”.由题意知A,B互相独立.故目标被击中的概率为P=1-P()=1-P()P()=1-0.2×0.3=0.94.
故选:C
11.D
由题意,遇绿灯服从二项分布,结合互斥事件概率的求法,即可求同学在上学的路上至少遇到2次绿灯的概率.
【详解】
4次均不是绿灯的概率为,
3次不是绿灯的概率为,
∴至少遇到2次绿灯的概率为.
故选:D.
12.D
利用相互独立事件的概率乘法公式及对立事件的概率公式即可求解.
【详解】
解:由题意,该同学从家到学校至少遇到一次红灯的概率为,
故选:D.
13.D
根据互斥事件概率的加法关系即可求解.
【详解】
由题:A,B是互斥事件,
所以,
且,,
则.
故选:D
14.D
根据互斥之间和对立事件的概念,及互斥事件和对立事件的关系和概率的计算,即可作出判断,得到答案.
【详解】
由题意①中,根据对立事件与互斥事件的关系,可得是正确;
②中,当A与B是互斥事件时,才有P(A∪B)=P(A)+P(B),对于任意两个事件A,B满足P(A∪B)=P(A)+P(B)-P(AB),所以是不正确的;
③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;
④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A={摸到红球或黄球},事件B={摸到黄球或黑球},显然事件A与B不互斥,但P(A)+P(B)=.
所以错误命题有3个.
故选:D
本题主要考查了互斥事件和对立事件的基本概念、互斥事件与对立时间的关系及其应用,其中熟记互斥事件和对立事件的概念和关系是解答的关键,着重考查了推理与论证能力,属于基础题.
15.B
由题可知传球共有32种可能,其中开始在A同学脚下,经过5次传球后,球回到A同学脚下的有10种,即求.
【详解】
由题可知,开始在A同学脚下,5次传球共有32种可能,

其中开始在A同学脚下,经过5次传球后,球回到A同学脚下的有10种,
∴球回到A同学脚下的概率为.
故选:B.
16.0.12##
利用对立事件的概率求法求脱靶的概率.
【详解】
由题设,射手射击结果为{命中I,命中Ⅱ,命中Ⅲ,脱靶},
所以,由对立事件的概率公式可得:脱靶的概率为.
故答案为:
17.
根据对立事件的概率关系可求.
【详解】
因为随机事件A,B互为对立事件,故,而故,
故,
故答案为:.
18.
由对立事件的定义代入计算可得答案.
【详解】
解:由题意事件互相对立,且,
可得:且,
可得,
故答案为:.
本题主要考查对立事件的定义,考查学生对基础概念的理解,属于基础题.
19.(1);地区样本用户满意度评分低于的频率为;地区样本用户满意度评分低于的频率为
(2)0.7
(1)根据频率分布直方图中所有小矩形的面积之和为1得到方程,即可求出,再分别求出评分低于70分的频率;
(2)利用对立事件及相互独立事件的概率公式计算可得;
(1)
解:依题意可得
解得,
所以地区样本用户满意度评分低于的频率为,地区样本用户满意度评分低于的频率为;
(2)
解:根据用样本频率可以估计总体的频率,可以记从地区随机抽取一名用户评分低于70分的事件记为,则;可以记从地区随机抽取一名用户评分低于70分的事件记为,则.
易知事件和事件相互独立,则事件和事件相互独立,记事件“至少有一名用户评分满意度等级为“不满意为事件.
所以,
故至少有一名用户评分满意度等级为“不满意”概率为0.7
20.(1)
(2)
(1)根据独立事件的概率公式计算;
(2)结合互斥事件、独立事件的概率公式计算.
(1)
设事件“甲学校回答正确这道题”,事件“乙学校回答正确这道题”,事件“丙学校回答正确这道题” ,
则,,,
∵各学校回答这道题是否正确是互不影响的.
∴事件A,B,C相互独立.
∴,
∴ ;
(2)
设事件“甲、乙、丙三所学校中不少于2所学校回答正确这道题”且两两互斥,

由于事件A,B,C相互独立.
所以



21.(1)中位数为;众数为;极差为;估计这批鱼该项数据的百分位数约为;(2)(ⅰ);(ⅱ).
(1)由中位数—排序后处于中间的数,如有两个数取其平均数;众数—出现频率最高的数、极差—最大数与最小数的差;百分比位数—数据集中有n个数:当np为整数时,当np不为整数时;即可求出对应值;(2) (ⅰ)记:“两鱼最终均在水池”; :“两鱼最终均在水池”求出概率,由它们的互斥性即可求得两条鱼最终在同一水池的概率;(ⅱ)记:“两鱼同时从第n个小孔通过”且鱼的游动独立,知,而10个事件互斥,则“两鱼同时从一个小孔通过”的概率即可求,它与“两条鱼由不同小孔通过”为互斥事件,进而求得其概率
【详解】
解:(1)由题意知,数据的中位数为
数据的众数为
数据的极差为
估计这批鱼该项数据的百分位数约为
(2)(ⅰ)记“两鱼最终均在水池”为事件,则
记“两鱼最终均在水池”为事件,则
∵事件与事件互斥,
∴两条鱼最终在同一水池的概率为
(ⅱ)记“两鱼同时从第一个小孔通过”为事件,“两鱼同时从第二个小孔通过”为
事件,依次类推;而两鱼的游动独立

记“两条鱼由不同小孔进入水池”为事件,则与对立,又由事件,事件,互斥


本题考查了数据特征值的概念,以及利用条件概率公式,结合互斥事件、独立事件等概念求概率;注意独立事件:多个事件的发生互不相关,且可以同时发生;互斥事件:一个事件发生则另一个事件必不发生,即不能同时发生
22.(1);
(2)0.972.
(1)设“至少有一个系统不发生故障”为事件C,根据对立事件的概率即:甲乙均不发生故障,进而求得关于p的值;
(2)根据独立重复试验概率公式可求得答案.
(1)
解:(1)设“至少有一个系统不发生故障”为事件C,那么,解得.
(2)
解:设“系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D,
则.
答案第1页,共2页
答案第1页,共2页