2.2探索直线平行的条件(1)

文档属性

名称 2.2探索直线平行的条件(1)
格式 zip
文件大小 19.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2013-03-21 22:54:49

文档简介

七下2-2探索直线平行的条件(1)
课标与教材分析:
平行线与相交线构成了同一平面内两条直线的基本位置关系。在七年级上册学生已经直观认识了角、平行与垂直,积累了初步的数学活动经验的基础上,本章将进一步探索平行线、相交线的有关事实。教材通过设置观察、操作等探索活动,按照“先探索直线平行的条件、再探索平行线的特征”的顺序呈现有关内容,在带领学生探索性质和解决问题的过程中,以直观认识为基础训练学生进行简单的说理,以加深对平行的理解,并学会借助平行解决一些简单的实际问题,进一步发展学生的空间观念。所以,本章及本节内容无论是在知识、数学思想方法还是对学生能力的培养方面都是非常重要的。
本节“探索直线平行的条件”共分两课时完成,第一课时探索得出判别直线平行的条件一,并初步认识“三线八角”中的同位角,第二课时在进一步认识“三线八角”中的内错角和同旁内角的同时,探索得出判别直线平行的条件二、三。本单元教学设计时将遵循教科书编写思路,在探索直线平行条件的过程中自然引入“三线八角”,使该知识的学习成为解决问题的需要,而不是孤立地处理这些内容。
学情分析:
学生在七年级上册《平面图形及其位置关系》一章中,已经结合丰富的现实情景,直观认识了两条直线的平行关系,了解了平行线的定义,会借助方格纸、利用直尺、三角板用多种方法画平行线,经历了在操作活动中探索图形性质的过程,初步掌握了平行线的有关性质,并用自己的语言加以描述,初步具有了有条理地思考与表达的能力,为本章的深入学习奠定了基础。
在七年级上册《平面图形及其位置关系》一章中,教材为学生提供了大量生动有趣的现实情境,通过观察、测量、画图、模型操作、拼摆、图案设计等活动,使学生在活动中自觉体会平面图形的性质及位置关系,获得了初步的数学活动经验和体验。同时在活动中也培养了学生良好的情感态度,顺利实现中学、小学过渡,以积极的态度投入初中数学的学习,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力。
教学目标:
1.经历探索直线平行条件的过程,掌握利用同位角相等判别直线平行的结论,并能解决一些问题。
2.会识别由“三线八角”构成的同位角,会用三角尺过已知直线外一点画这条直线的平行线。
3.经历观察、操作、想象、推理、交流等活动,体会利用操作、归纳获得数学结论的过程,进一步发展空间想象、推理能力和有条理表达的能力。
4.使学生在积极参与探索、交流的数学活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性。
教学重点:
经历探索直线平行条件的过程,掌握利用同位角相等判别直线平行的结论,并能解决一些问题。
教学难点:
体会利用操作、归纳获得数学结论的过程,进一步发展空间想象、推理能力和有条理表达的能力。
教学方法:
探究 操作
教学媒体:
多媒体课件
教学过程:
一):巧妙设疑,复习引入
问题1:在同一平面内两条直线的位置关系有几种?分别是什么?
学生很容易回答出“在同一平面内两条直线的位置关系有两种,分别是相交和平行”,再进一步针对相交和平行分别提出问题2、3。
问题2:如图,两条直线相交所构成的四个角中分别有何关系?
借助两条直线相交的基本图形复习“两线四角”的关系,为探索“三线八角”
的关系奠定基础。
问题3:什么叫两条直线平行?
复习平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
问题4:观察下面每幅图中的直线a,b,它们分别平行吗?你能验证吗?
三组直线看上去似乎不平行,其实它们分别都是平行的,这是由于背景造成的视觉误差,所以按照平行线的定义仅凭观察来判断直线的平行关系是不够的,这就需要进一步寻求证据,本节课老师将和同学们一起来——探索直线平行的条件,由此引入新课。
二):联系实际,积极探索
1.引入实际问题:如课本彩图,装修工人正在向墙上钉木条。如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角是多少度时,才能使木条a与木条b平行?
学生根据自己的生活经验自然会得到:木条a也与墙壁边缘垂直时,才能使木条a与木条b平行。在此基础上提出两个问题:
问题1:实际问题中在判断两根木条平行时,借助了墙壁作为参照,你能将上述问题抽象为数学问题吗?试着画出图形,并结合图形说明。
学生回答:如图,把墙壁看作直线c,直线b与直线c垂直时,
只有当直线a也与直线c垂直时,才能得到直线a平行于直线b。
问题2:图中的直线b与直线c不垂直,直线a应满足什么条件才能与直线b平行呢?请你利用教具亲自动手操作。
做一做:利用纸条和图钉自己制作学具,如图,三根纸条相交成∠1,∠2,
固定纸条b,c,转动纸条a, 在操作的过程中让学生观察∠2的变化以及它
与∠1的关系,你发现纸条a与纸条b的位置关系发生了什么变化?纸条a
何时与纸条b平行?改变图中∠1的大小再试一试,与同学交流你的发现。
引导学生发现,当图中的∠2满足与∠1相等时,纸条a与纸条b平行。
再利用课件展示,加深学生的认识。
2.由∠1与∠2的位置关系引出对“三线八角”的认识和同位角的概念。
如图,直线AB,CD被直线l所截,构成了八个角,具有∠1与∠2
这样位置关系的角,可以看作是在被截直线的同一侧,在截线的同一旁,
相对位置是相同的,我们把这样的角称为同位角。
问题1:图中还有其他的同位角吗?
问题2:这些角相等也可以得出两直线平行吗?
3.综上探索,引导学生归纳出两直线平行的条件:同位角相等,两直线平行。
第三环节:变式训练,熟练技能:
活动内容:
练习1 指出下面点阵中互相平行的线段,并说明理由
(点阵中相邻的四个点构成正方形)。
练习2 如图,∠1=∠2=55°, ∠3等于多少度?直线
AB、CD平行吗?说明你的理由。
练习3 议一议:你还记得怎样用移动三角板的方法画两条平行线吗?
你能用这种方法过已知直线AB外一点P画它的平行线吗?
请说出其中的道理。
第四环节:迁移应用,深化提高:
1.带领学生研究课本66页“数学理解”栏目中的两个实际问题:
问题1:你能用一张不规则的纸(如图)折出两条平行的直线吗?
与同伴说说你的折法。
问题2:如图(1)是一种画平行线的工具,在画平行线之前,工人师傅往往要先调整一下工具,如图2,然后画平行线,你能说明这种工具的用法和其中得道理吗?(图见教材)
2.如图,在屋架上要加一根横梁DE,已知∠B=32°,
要使DE∥BC,则∠ADE必须等于多少度?为什么?
第五环节:总结反思,情意发展
活动内容:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。
问题1:本节课你认为自己解决的最好的问题是什么?
问题2:本节课你有哪些收获?
问题3:通过今天的学习,你想进一步探究的问题是什么?
第六环节:课堂检测:见练习册34页练习一
第七环节:布置课后作业:
1.习题2.2知识技能。
2.补充练习:如图,是由两块相同的直角三角板拼成的,
(1)请写出图中相等的角;
(2)写出图中平行的线段,并说明理由。
板书设计:
同位角相等,两直线平行
例题:略