第2节 太阳与行星间的引力
1.牛顿在物理学上的重大贡献之一就是建立了关于运动的清晰的概念,他在前人对于惯
性研究的基础上,首先思考的问题是“物体怎样才会不沿直线运动”,他的回答是:
________________________________________________________.由此推出:使行星沿圆
或椭圆运动,需要指向__________________的力,这个力应该就是_____.于是,牛顿利用他的____________把行星的向心加速度与____________________联系起来了.不仅如此,牛顿还认为这种引力存在于________________.
2.行星绕太阳做近似匀速圆周运动,需要的向心力是由____________________提供的,
由向心力的公式结合开普勒第三定律得到向心力F=____________.
由此我们可以推得太阳对不同行星的引力,与行星的质量m成______,与行星和太阳间
距离的二次方成______,即F∝.
3.根据牛顿第三定律,可知太阳吸引行星的同时,行星也必然吸引太阳,行星对太阳的
引力与太阳的质量M成________,与行星和太阳间距离的二次方成________,即F′∝.
4.太阳与行星间引力的大小与太阳的质量、行星的质量成正比,与两者距离的二次方成
反比,即F=________,式中G为比例系数,其大小与太阳和行星的质量________,太
阳与行星引力的方向沿二者的____________.
5.下面关于行星对太阳的引力的说法中正确的是( )
A.行星对太阳的引力和太阳对行星的引力是同一性质的力
B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关
C.太阳对行星的引力大于行星对太阳的引力
D.行星对太阳的引力大小与太阳的质量成正比,与行星距太阳的距离成反比
6.太阳对行星的引力F与行星对太阳的引力F′大小相等,其依据是( )
A.牛顿第一定律 B.牛顿第二定律
C.牛顿第三定律 D.开普勒第三定律
7.下面关于太阳对行星的引力的说法中正确的是( )
A.太阳对行星的引力等于行星做匀速圆周运动的向心力
B.太阳对行星的引力大小与行星的质量成正比,与行星和太阳间的距离成反比
C.太阳对行星的引力规律是由实验得出的
D.太阳对行星的引力规律是由开普勒定律、牛顿运动定律和行星绕太阳做匀速圆周运
动的规律推导出来的
【概念规律练】
知识点一 太阳与行星间的引力
1.陨石落向地球是因为( )
A.陨石对地球的吸引力远小于地球对陨石的吸引力,所以陨石才落向地球
B.陨石对地球的吸引力和地球对陨石的吸引力大小相等,但陨石的质量小,加速度大,
所以改变运动方向落向地球
C.太阳不再吸引陨石,所以陨石落向地球
D.陨石是在受到其他星球斥力作用下落向地球的
2.关于太阳对行星的引力,下列说法中正确的是( )
A.太阳对行星的引力提供行星做匀速圆周运动的向心力,因此有F引=m,由此可知,
太阳对行星的引力F引与太阳到行星的距离r成反比
B.太阳对行星的引力提供行星绕太阳运动的向心力,因此有F引=m,由此可知,太
阳对行星的引力F引与行星运行速度的二次方成正比
C.太阳对不同行星的引力,与行星的质量成正比,与行星和太阳间的距离的二次方成
反比
D.以上说法均不对
3.关于太阳与行星间引力F=,下列说法中正确的是( )
A.公式中的G是引力常量,是人为规定的
B.这一规律可适用于任何两物体间的引力
C.太阳与行星间的引力是一对平衡力
D.检验这一规律是否适用于其他天体的方法是比较观测结果与推理结果的吻合性
知识点二 太阳与行星间的引力与行星运动的关系
4.关于行星绕太阳运动的原因,下列说法中正确的是( )
A.由于行星做匀速圆周运动,故行星不受任何力的作用
B.由于行星周围存在旋转的物质
C.由于受到太阳的引力
D.除了受到太阳的吸引力,还必须受到其他力的作用
5.把行星的运动近似看作匀速圆周运动以后,开普勒第三定律可写为T2=,m为行星
质量,则可推得( )
A.行星所受太阳的引力为F=k
B.行星所受太阳的引力都相同
C.行星所受太阳的引力为F=k
D.质量越大的行星所受太阳的引力一定越大
【方法技巧练】
太阳与行星间的引力的求解方法
6.一颗小行星绕太阳做匀速圆周运动的轨道半径是地球公转半径的4倍,则这颗小行星
的运行速率是地球运行速率的( )
A.4倍 B.2倍
C.0.5倍 D.16倍
7.已知木星质量大约是地球质量的320倍,木星绕日运行轨道的半径大约是地球绕日运
行轨道半径的5.2倍,试求太阳对木星和对地球引力大小之比.
1.行星之所以绕太阳运行,是因为( )
A.行星运动时的惯性作用
B.太阳是宇宙的控制中心,所有星体都绕太阳旋转
C.太阳对行星有约束运动的引力作用
D.行星对太阳有排斥力作用,所以不会落向太阳
2.地球对月球具有相当大的万有引力,可它们没有靠在一起,这是因为( )
A.不仅地球对月球有万有引力,而且月球对地球也有万有引力,这两个力大小相等,
方向相反,互相抵消了
B.不仅地球对月球有万有引力,而且太阳系中的其他星球对月球也有万有引力,这些
力的合力为零
C.地球对月球的引力还不算大
D.地球对月球的万有引力不断改变月球的运动方向,使得月球围绕地球运动
3.关于太阳与行星间的引力,下列说法中正确的是( )
A.由于地球比木星离太阳近,所以太阳对地球的引力一定比对木星的引力大
B.行星绕太阳沿椭圆轨道运动时,在近日点所受引力大,在远日点所受引力小
C.由F=G可知,G=,由此可见G与F和r2的乘积成正比,与M和m的乘积
成反比
D.行星绕太阳运动的椭圆轨道可近似看作圆形轨道,其向心力来源于太阳对行星的引
力
4.下列说法正确的是( )
A.在探究太阳对行星的引力规律时,我们引用了公式,这个关系式实际上是牛顿第
二定律,是可以在实验室中得到验证的
B.在探究太阳对行星的引力规律时,我们引用了公式v=,这个关系式实际上是匀速圆周运动的一个公式,它是由速度的定义式得来的
C.在探究太阳对行星的引力规律时,我们引用了公式=k,这个关系式是开普勒第三
定律,是可以在实验室中得到证明的
D.在探究太阳对行星的引力规律时,使用的三个公式都是可以在实验室中得到证明的
5.关于万有引力,下列说法正确的是( )
A.万有引力只有在天体与天体之间才能明显表现出来
B.一个苹果由于其质量很小,所以它受的万有引力几乎可以忽略
C.地球对人造卫星的万有引力远大于卫星对地球的万有引力
D.地球表面的大气层是因为万有引力的约束而存在于地球表面附近
6.人造卫星绕地球做匀速圆周运动,卫星所受万有引力F与轨道半径r的关系是( )
A.F与r成正比 B.F与r成反比
C.F与r2成正比 D.F与r2成反比
7.两个行星的质量分别为m1和m2,它们绕太阳运行的轨道半径分别是r1和r2,若它们
只受太阳引力的作用,那么这两个行星的向心加速度之比为( )
A.1 B.
C. D.
题 号
1
2
3
4
5
6
7
答 案
8.对太阳系的行星,由公式v=,F=,=k可以得到F=________,这个公式
表明太阳对不同行星的引力,与________________成正比,与_________成反比.
9.已知太阳光从太阳射到地球需要500 s,地球绕太阳的公转周期约为3.2×107 s,地球
的质量约为6×1024 kg,求太阳对地球的引力为多大?(答案只需保留一位有效数字)
第2节 太阳与行星间的引力
课前预习练
1.以任何方式改变速度(包括改变速度的方向)都需要力 圆心或椭圆焦点 太阳对它的引力 运动定律 太阳对它的引力 所有物体之间
2.太阳对行星的引力 4π2k 正比 反比
3.正比 反比
4.G 无关 连线方向
5.A [行星对太阳的引力与太阳对行星的引力是作用力和反作用力的关系,两者性质相同、大小相等、反向,所以A正确,C错误;行星与太阳间引力的大小与太阳的质量、行星的质量成正比,与两者距离的二次方成反比,所以B、D错误.]
6.C [物体间力的作用是相互的,作用力和反作用力大小相等,方向相反,作用在同一条直线上,所以依据是牛顿第三定律.]
7.AD [行星围绕太阳做圆周运动的向心力是太阳对行星的引力,它的大小与行星和太阳质量的乘积成正比,与行星和太阳间距离的二次方成反比,所以A对,B错.太阳对行星的引力规律是由开普勒第三定律、牛顿运动定律和行星绕太阳做匀速圆周运动的规律推导出来的,所以C错,D对.]
课堂探究练
1.B
2.C [由向心力表达式F=mv2/r和v与T的关系式v=2πr/T得F=4π2mr/T2 ①
根据开普勒第三定律r3/T2=k变形得
T2=r3/k ②
联立①②有F=4π2k·m/r2
故太阳对不同行星的引力,与行星的质量成正比,与行星和太阳间距离的二次方成反比.]
3.BD [G值是由物体间存在的万有引力的性质决定的,而不是人为规定的,故A错误;万有引力公式适用于任意两物体间的引力作用,故B正确;太阳与行星之间的引力是一对作用力和反作用力,而不是一对平衡力,故C错误;理论推理的结果是否正确,要看根据理论推出的结果是否与观察的结果相吻合,故D正确.]
4.C [行星绕太阳运动的原因就是太阳对行星的吸引力提供了行星做圆周运动的向心力.]
5.C [行星所受太阳的引力提供行星绕太阳做匀速圆周运动的向心力,由公式F=,又v=,结合T2=可得F=k,故C正确,A错误;不同行星所受太阳的引力由太阳、行星的质量和行星与太阳间的距离决定,故B、D错误.]
6.C [小行星、地球绕太阳运行的向心力分别为F1、F2,对应的速度分别为v1、v2,由向心力公式得,F1=m1,由太阳与行星之间的相互作用规律可知,F1∝,由上述两式可得,v1∝,同理可得,v2∝,故=,因r1=4r2,故=,故正确答案是C.]
方法总结 要明确小行星、地球绕太阳运行的向心力的来源.在计算比值一类的问题时,可将所计算的物理量进行化简至不同的对象间具有相同的物理量为止,这样便于解题,请结合本题认真体会.
7.11.8∶1
解析 设地球质量为m,则木星质量为320m,设地球绕日运行轨道半径为r,则木星绕日运行轨道半径为5.2r,则有:
太阳对地球的引力:F1=
太阳对木星的引力:F2=
因此引力大小之比为=≈.
课后巩固练
1.C [惯性应使行星沿直线运动,A错.太阳不是宇宙的中心,并非所有星体都绕太阳运动,B错.行星绕太阳做曲线运动,轨迹向太阳方向弯曲,是因为太阳对行星有引力作用,C对.行星之所以没有落向太阳,是因为引力提供了向心力,并非是对太阳有排斥力,D错.]
2.D [地球对月球的引力和月球对地球的引力是相互作用力,作用在两个物体上不能相互抵消,A错.地球对月球的引力提供了月球绕地球做圆周运动的向心力,从而不断改变月球的运动方向,所以B、C错,D对.]
3.BD
4.AB [开普勒第三定律=k是无法在实验室中得到验证的.它是开普勒在研究天文学家第谷的行星观测记录资料发现的.]
5.D [自然界中任何两个物体间都有相同的引力作用,故A错;苹果质量虽小,但由于地球质量很大,故引力不可忽略,B错;物体间的万有引力是相互的,由牛顿第三定律知应等大,故C错.D选项正确.]
6.D [卫星围绕地球做匀速圆周运动时,向心力由万有引力提供,此时卫星与地球间的距离即为卫星的轨道半径,由太阳与行星间的引力F=可知,D正确.]
7.D [设行星m1、m2的向心力分别是F1、F2,由太阳、行星之间的作用规律可得:F1∝,F2∝,而a1=,a2=,故=,D项正确.]
8. 行星的质量 行星和太阳间距离的二次方
9.3×1022 N
解析 F引=F向=mRω2=mR,又R=ct(c为光速),得F引== N=3×1022 N.
习题课
基础练
1.关于做平抛运动的物体,下列说法中正确的是( )
A.物体只受重力作用,做的是a=g的匀变速运动
B.初速度越大,物体在空间的运动时间越长
C.物体在运动过程中,在相等的时间间隔内水平位移相等
D.物体在运动过程中,在相等的时间间隔内竖直位移相等
2.关于平抛运动,下列说法正确的是( )
A.从同一高度,以大小不同的速度同时水平抛出两个物体,它们一定同时着地,但抛
出的水平距离一定不同
B.从不同高度,以相同的速度同时水平抛出两个物体,它们一定不能同时着地,抛出
的水平距离也一定不同
C.从不同高度,以不同的速度同时水平抛出两个物体,它们一定不能同时着地,抛出
的水平距离也一定不同
D.从同一高度,以不同的速度同时水平抛出两个物体,它们一定不能同时着地,抛出
的水平距离也一定不同
3.做平抛运动的物体,每秒的速度增量总是( )
A.大小相等,方向相同
B.大小不等,方向不同
C.大小相等,方向不同
D.大小不等,方向相同
4.飞机以150 m/s的水平速度匀速飞行,某时刻让A球落下,相隔1 s又让B球落下,
不计空气阻力,在以后的运动过程中,关于A、B两球相对位置的关系,下列结论中正
确的是( )
A.A球在B球的前下方
B.A球在B球的后下方
C.A球在B球的正下方5 m处
D.以上说法都不对
5.在高处以初速度v0水平抛出一粒石子,当它的速度由水平方向变化到与水平方向夹
角为θ的过程中,石子水平位移的大小为( )
A. B.
C. D.
6.如图1所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体
与斜面接触时速度与水平方向的夹角φ满足( )
图1
A.tan φ=sin θ B.tan φ=cos θ
C.tan φ=tan θ D.tan φ=2tan θ
7.物体做平抛运动时,它的速度方向与水平方向的夹角α的正切值tan α随时间t变化
的图象是下列图中的( )
提升练
8.
图2
如图2所示,从倾角为θ的斜面上A点,以水平速度v0抛出一个小球,不计空气阻力,
它落到斜面上B点时所用的时间为( )
A.
B.
C.
D.
9.
图3
如图3所示,A、B两质点以相同的水平初速度v0抛出,A在竖直面内运动,落地点为
P1,B沿光滑斜面运动,落地点为P2,不计阻力,比较P1、P2在x轴方向上距抛出点的
远近关系及落地时速度的大小关系,正确的是( )
A.P2较远
B.P1、P2一样远
C.A落地时速率大
D.A、B落地时速率一样大
10.
图4
平抛运动可以分解为水平和竖直方向上的两个直线运动,在同一坐标系中作出这两个分
运动的v-t图线,如图4所示,若平抛运动的时间大于2t1,下列说法中正确的是( )
A.图线2表示竖直分运动的v-t图线
B.t1时刻的速度方向与初速度方向夹角为30°
C.t1时刻的位移方向与初速度方向夹角的正切值为
D.2t1时刻的位移方向与初速度方向夹角为60°
题 号
1
2
3
4
5
6
7
8
9
10
答 案
11.汽车以16 m/s的速度在地面上匀速行驶,汽车后壁货架上放一书包,架高1.8 m,汽
车突然刹车,刹车的加速度大小是4 m/s2,致使书包从架上落下,忽略书包与架子间的
摩擦及空气阻力,g取10 m/s2,则书包落在车上距车后壁________ m处.
12.为了清理堵塞河道的冰凌,空军实施投弹爆破.飞机在河道上空高H处以速度v0
水平匀速飞行,投掷下炸弹并击中目标,求炸弹从刚脱离飞机到击中目标所飞行的水平
距离及击中目标时的速度大小.(不计空气阻力)
13.
图5
如图5所示,射击枪水平放置,射击枪与目标靶中心位于离地面足够高的同一水平线上,
枪口与目标靶之间的距离x=100 m,子弹射出的水平速度v=200 m/s,子弹从枪口射出
的瞬间,目标靶由静止开始释放,不计空气阻力,重力加速度g取10 m/s2,求:
(1)从子弹由枪口射出开始计时,经多长时间子弹击中目标靶?
(2)目标靶由静止开始释放到被子弹击中,下落的距离h为多少?
14.A、B两个小球由柔软的细线相连,线长l=6 m;将A、B球先后以相同的初速度v0
=4.5 m/s,从同一点水平抛出(先A后B),相隔时间Δt=0.8 s.
(1)A球抛出后经多少时间,细线刚好被拉直?
(2)细线刚被拉直时,A、B球的水平位移(相对于抛出点)各多大?(g取10 m/s2)
习题课
1.AC
2.AB [根据平抛运动的规律,水平位移x=v1t,竖直位移y=gt2,所以落地时间由抛出时的高度决定,水平位移由抛出高度和初速度共同决定,所以A、B正确.]
3.A 4.D 5.C
6.D [物体从斜面顶端抛出落到斜面上,平抛运动过程位移与水平方向的夹角等于斜面倾角θ,即tan θ===,而落到斜面上时的速度方向与水平方向的夹角正切值tan φ==,所以tan φ=2tan θ,D项正确.]
7.B [由平行四边形定则可知tan α=,而vy=gt,所以tan α=t,tan α与t成正比,所以B正确.]
8.B [设小球从抛出至落到斜面上的时间为t,在这段时间内水平位移和竖直位移分别为x=v0t,y=gt2,如图所示,由几何关系知tan θ==,所以t=tan θ.]
9.AD
10.AC [平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,故A对;由v-t图象可知,t1时刻,水平和竖直分速度相等,所以t1时刻的速度方向与初速度方向夹角为45°,B错;设t1时刻速度方向与初速度方向夹角为φ,位移方向与初速度方向夹角为θ,则有推论:tan φ=2tan θ,C对;由v-t图象可知,2t1时刻,vy=2v0,tan φ=2,故tan θ=1,即2t1时刻的位移方向与初速度方向夹角为45°.]
11.0.72
解析 书包从架上落下后,书包所做的是平抛运动,其下落时间为t==0.6 s,它在水平方向上的位移x1=v0t=16×0.6 m=9.6 m.对汽车来说它刹车后经t2==4 s停下来,所以在0.6 s内汽车的位移x2=v0t-at2=8.88 m,所以书包应落在距汽车后壁Δx=x1-x2=0.72 m处.
12.v0
解析 设炸弹从刚脱离飞机到击中目标所用时间为t,水平运动的距离为x,由平抛运动的规律
H=gt2 ①
x=v0t ②
联立①和②,得
x=v0 ③
设炸弹击中目标时的速度为v,竖直方向的速度分量为vy
vy=gt ④
v= ⑤
联立①④⑤,得
v=
13.(1)0.5 s (2)1.25 m
解析 (1)子弹做平抛运动,它在水平方向的分运动是匀速直线运动,设子弹经t时间击中目标靶,则
t=
代入数据得t=0.5 s
(2)目标靶做自由落体运动,则h=gt2
代入数据得h=1.25 m
14.(1)1 s (2)A球的水平位移为4.5 m,B球的水平位移为0.9 m
解析 (1)两球水平方向位移之差恒为4.5×0.8 m=3.6 m,AB竖直方向的位移差随时间变化,当竖直方向位移差与水平方向位移差的合位移差等于6 m时绳被拉直.
由水平方向位移差3.6 m,绳子长6 m,可以求得竖直方向位移差为h时绳绷紧.
h= m=4.8 m,有
gt2-g(t-0.8 s)2=4.8 m,得t=1 s.
(2)细线刚被拉直时,A球的水平位移为4.5×1 m=4.5 m,B球的水平位移为4.5×(1-0.8) m=0.9 m.