6.2排列与组合 同步练习(Word版含解析)

文档属性

名称 6.2排列与组合 同步练习(Word版含解析)
格式 docx
文件大小 321.7KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-05-08 08:42:35

图片预览

文档简介

人教A版(2019)选择性必修第三册 6.2 排列与组合 同步练习
一、单选题
1.通常,我国民用汽车号牌的编号由两部分组成:第一部分为汉字表示的省、自治区、直辖市简称和用英文字母表示的发牌机关代号,笫二部分为由阿拉伯数字与英文字母组成的序号.其中序号的编码规则为:①由0,1,2,…,9这10个阿拉伯数字与除,之外的24个英文字母组成;②最多只能有2个位置是英文字母,如:粤,则采用5位序号编码的粤牌照最多能发放的汽车号牌数为( )
A.586万张 B.682万张 C.696万张 D.706万张
2.一个密码箱上有两个密码锁,只有两个密码锁的密码都对才能打开.两个密码锁都设有四个数位,每个数位的数字都可以是1,2,3,4中的任一个.现将左边密码锁的四个数字设成两个相同,另两个也相同;右边密码锁的四个数字设成互不相同.这样的密码设置的方法有( )种情况.
A.288 B.864 C.1436 D.1728
3.已知,则的值为( )
A.4 B.5 C.6 D.7
4.有7名学生参加“学党史知识竞赛”,咨询比赛成绩,老师说:“甲的成绩是最中间一名,乙不是7人中成绩最好的,丙不是7人中成绩最差的,而且7人的成绩各不相同”.那么他们7人不同的可能位次共有( )
A.120种 B.216种 C.384种 D.504种
5.从1,2,3,4,5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不一定相邻),这样的三位数有( )
A.51个 B.54个 C.12个 D.45个
6.设,的个位数字为,十位数字为,则的值为( )
A. B. C.2 D.3
7.学校要求学生从物理 历史 化学 生物 政治 地理这6科中选3科参加考试,规定先从物理和历史中任选1科,然后从其他4科中任选2科,不同的选法种数为( )
A.5 B.12 C.20 D.120
8.甲、乙、丙3人站到共有6级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是( )
A.90 B.120 C.210 D.216
9.在象棋比赛中,参赛的任意两位选手都比赛一场,其中胜者得2分,负者得0分,平局各得1分.现有四名学生分别统计全部选手的总得分为131分,132分,133分,134分,但其中只有一名学生的统计结果是正确的,则参赛选手共有( )
A.11位 B.12位 C.13位 D.14位
10.将编号为1、2、3、4、5的5个小球全部放入 三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有( )
A. B.36 C.48 D.60
11.受新冠肺炎疫情影响,某学校按上级文件指示,要求错峰放学,错峰有序吃饭.高三年级一层楼六个班排队,甲班必须排在前三位,且丙班、丁班必须排在一起,则这六个班排队吃饭的不同安排方案共有( )
A.240种 B.120种 C.188种 D.156种
12.如图,洛书(古称龟书),是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取3个数,则选取的3个数之和为奇数的方法数为( )
A.30 B.40 C.44 D.70
13.某大学计算机学院的丁教授在2021年人工智能方向招收了6名研究生.丁教授拟从人工智能领域的语音识别、人脸识别、数据分析、机器学习、服务器开发共5个方向展开研究,每个方向均有研究生学习,每位研究生只参与一个方向的学习.其中小明同学因录取分数最高主动选择学习人脸识别,其余5名研究生均表示服从丁教授统一安排.则这6名研究生不同的分配方向共有( )
A.480种 B.360种 C.240种 D.120种
14.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为 ( )
A. B. C. D.
15.某校从5名同学中选择3人分别参加数学、物理、化学竞赛,则不同选法种数是( )
A.10 B.30 C.60 D.125
二、填空题
16.一个质点从原点出发,每秒末必须向右,或向左,或向上,或向下跳一个单位长度,则此质点在第秒末到达点的跳法共有______种.
17.某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课,要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是___________.
18.我市大会展厅前广场改造,在人行道(斑马线)两侧划分块区域(如图),现有四种不同颜色的花卉,要求每块区域随机种植一种颜色的花卉,且相邻区域(有公共边的区域)所选花卉颜色不能相同,则不同的摆放方式共有__种.
三、解答题
19.4位同学报名参加2022年杭州亚运会6个不同的项目(记为,,,,,)的志愿者活动.假设每位同学恰报1个项目,且报名各项目是等可能的.
(1)求4位同学报了4个不同的项目的概率;
(2)求1位同学报了项目,剩余3位同学都报了项目的概率.
20.在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.
(1)有多少种不同的抽法?
(2)抽出的3件中恰好有1件是次品的抽法有多少种?
(3)抽出的3件中至少有1件是次品的抽法有多少种?
21.4个男同学,3个女同学站成一排.
(1)3个女同学必须相邻,有多少种不同的排法?
(2)任何两个女同学彼此不相邻,有多少种不同的排法?
(3)3个女同学站在中间三个位置上的不同排法有多少种?
(4)其中甲、乙两人相邻,但都不与丙相邻,则有多少种不同的排法?
(5)若3个女同学身高互不相等,女同学从左到右按高矮顺序排,有多少种不同的排法?
22.计算:
(1);
(2);
(3).
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.D
讨论后5位全部为数字、有一个字母、有两个字母三种情况,其中有两个字母再分两个字母相同、不同两种,结合分类分步计数方法求最多能发放的汽车号牌数即可.
【详解】
1、后5位全部为数字,共有张牌,
2、后5位有一个字母:共有张牌,
3、后5位有两个字母:当两个字母相同,有张牌;当两个字母不同,张牌;
综上,共有张牌.
故选:D
2.B
分别算出左边密码锁和右边密码锁的设置方式,再相乘即可得到.
【详解】
左边密码锁的四个数字共有种设法,右边密码锁的四个数字共有种设法,故密码设置的方法有种.
故选:B.
方法点睛:本题考查排列组合,解排列、组合问题的基本原则:特殊优先,先分组再分解,先取后排;较复杂问题可采用间接法,转化为求它的对立事件,解题时要细心、周全,做到不重不漏,考查学生的计算,属于基础题.
3.B
根据排列数的计算公式,进行计算即可.
【详解】

化简得,所以.
故选:B
4.D
甲的位置固定,问题转化为排头排尾有限制的排列问题,利用间接法求解.
【详解】
因为甲的成绩是中间一名,
所以只需安排其余6人位次,
因为乙不排第一名,丙不排最后一名,
所以由间接法可得,
故选:D
5.A
由题意分类讨论,结合排列组合公式整理计算即可求得最终结果.
【详解】
由题意分类讨论:
(1)当这个三位数,数字2和3都有,再从1,4,5中选一个,因为2需排在3的前面,这样的三位数有(个).
(2)当这个三位数,2和3只有一个,需从1,4,5中选两个数字,这样的三位数有(个).
(3)当这个三位数,2和3都没有,由1,4,5组成三位数,这样的三位数有(个)
由分类加法计数原理得共有(个).
故选:A.
方法点睛:本题考查排列组合,解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步,具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).
6.A
根据,可得当自然数n大于或等于10时,的个位数和十位数都是0,从而可得的个位数字和十位数字即为的个位数字和十位数字,求出即可得解.
【详解】
解:因为,
所以当自然数n大于或等于10时,的个位数和十位数都是0,
所以的个位数字和十位数字即为的个位数字和十位数字,

所以的个位数字和十位数字分别为4和1,
所以,
所以.
故选:A.
7.B
先从物理和历史中选一科,再从剩下4科中选一科,进而用分布计数原理得到答案.
【详解】
从物理和历史中任选1科,有种,然后从其他4科中任选2科,有种,
共有种.
故选:B.
8.C
根据题意:分为两类:第一类,甲、乙、丙各自站在一个台阶上;第二类,有2人站在同一台阶上,剩余1人独自站在一个台阶上,算出每类的站法数,然后再利用分类计数原理求解.
【详解】
因为甲、乙、丙3人站到共有6级的台阶上,且每级台阶最多站2人,
所以分为两类:第一类,甲、乙、丙各自站在一个台阶上,共有:种站法;
第二类,有2人站在同一台阶上,剩余1人独自站在一个台阶上,共有:种站法;
所以每级台阶最多站2人,同一级台阶上的人不区分站的位置的不同的站法总数是.
故选:C
本题主要考查排列组合的应用以及分类计数原理的应用,还考查了分析求解问题的能力,属于中档题.
9.B
设参赛选手共有位,则总场次为,由每场得分为2,即总得分只能为偶数,结合题设列方程求n值,并判断n值的合理性即可.
【详解】
设参赛选手共有位,则总比赛场次为,即场,且,,
由题意知:任意一场比赛结束,选手的总得分为2分,故所有选手总得分为分且为偶数,
∴当,得;当,无整数解;
∴(位).
故选:B.
关键点点睛:根据每场得分为2易知总得分为偶数,设参赛人数为n,利用组合数求比赛总场次,列方程求参赛人数.
10.A
根据盒子内小球的个数进行分类讨论,由此求得不同的总数.
【详解】
将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组.
当三个盒子中的小球个数分别为1、1、3时,由于放在同一个盒子里的小球编号互不相连,
故3个小球的编号只能是1、2、5的在一个盒子里,故只有一种分组方法,再分配到三个盒子,此时共有种分配方法;
当三个盒子中的小球个数分别为1、2、2时,由于放在同一个盒子里的小球编号互不相连,
此时放2个小球的盒子中小球的编号分别为、或、或、或、或、或、,共6种,
再分配到三个盒子中,此时,共有种.
综上所述,不同的放法种数为6+36=42种.
故选:A
11.B
根据题意,按甲班位置分3 种情况讨论,求出每种情况下的安排方法数目,由加法原理计算即可.
【详解】
解:根据题意,按甲班位置分3 种情况讨论:
(1)甲班排在第一位,丙班和丁班排在一起的情况有种,将剩余的三个班全排列,安排到剩下的3个位置,有种情况,此时有种安排方案;
(2)甲班排在第二位,丙班和丁班在一起的情况有种,将剩下的三个班全排列,安排到剩下的三个位置,有种情况,此时有种安排方案;
(3)甲班排在第三位,丙班和丁班排在一起的情况有种,将剩下的三个班全排列,安排到剩下的三个位置,有种情况,此时有种安排方案;
由加法计数原理可知共有种方案,
故选:B
此题考查排列组合的应用,涉及分类、分步计数原理的应用,属于基础题.
12.B
由题意可知,阴数为2,4,6,8,阳数为1,3,5,7,9,由条件可知3个数都为奇数,或是两偶一奇,列式即得答案.
【详解】
由题意可知,阴数为2,4,6,8,阳数为1,3,5,7,9.
若选则3个数的和为奇数,则3个数都为奇数,共有种方法,
或是两偶一奇,共有,共有种方法.
故选:B
13.B
分人脸识别不安排或安排研究生两种情况,应用组合、排列数求总分配方式即可.
【详解】
1、人脸识别方向不安排其它研究生,则种.
2、人脸识别方向安排1名其它研究生,则种.
综上,共有360种分配.
故选:B
14.C
利用古典概型的概率公式求解即可.
【详解】
根据八卦图可知:8个卦中含有两个以上阳爻的有1个,有两个阳爻的有3个,分别为离、巽、兑,有一个阳爻的有3个,分别为震、艮、坎,无阳爻的有1个,为坤,
选的两卦的六个爻中恰有两个阳爻,可以从有两个阳爻的离、巽、兑中选一个,另一个选坤,
这种选法有种;
也可以从有一个阳爻的震、艮、坎中选两个,这种选法有种,
从八卦中任取两卦的选法有种,
则从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为.
故选:.
15.C
先从5名同学中选择3人分别参加数学、物理、化学竞赛,再根据学科的不同排列求解.
【详解】
根据题意,某校从5名同学中选择3人分别参加数学、物理、化学竞赛,选出的3人有顺序的区别,
则有种选法;
故选:C.
本题主要考查排列问题,还考查了理解辨析的能力,属于基础题.
16.
要使质点从原点出发末到达点,则可能是向上跳次,向右跳次,向左跳次,或者向上跳次,向下跳次,向右跳次,然后利用组合数进行计算.
【详解】
分两类情况讨论:
第一类,向上跳次,向右跳次,向左跳次,有种;
第二类,向上跳次,向下跳次,向右跳次,有种,
根据分类计数原理得,共有种方法.
故答案为:.
17.16
根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序;(2)将这个整体与英语全排列,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,得数学、物理的安排方法,最后利用分步计数原理,即可求解.
【详解】
根据题意,可分三步进行分析:
(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序,有种情况;
(2)将这个整体与英语全排列,有中顺序,排好后,有3个空位;
(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,
安排物理,有2种情况,则数学、物理的安排方法有种,
所以不同的排课方法的种数是种,
故答案为:16.
18.
根据题意,分两步讨论区域①②和区域③④⑤的摆放方式数目,由分步计数原理计算可得答案
【详解】
根据题意,对于区域①②,可以在种颜色中任选种,有种选法;
对于区域③④⑤,可以在种颜色中任选种,有种选法,
则不同的摆放方式有种.
故答案为:.
【点评】
本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.
19.(1);(2).
(1)根据分步乘法计数原理,排列及古典概型可得结果;
(2)安排一名同学报A科目有种,根据古典概型求解.
【详解】
(1)由题知,4位同学报6个项目共有种可能,
4位同学报了4个不同的项目共有种可能,
所以.
(2)由题知,4位同学报6个项目共有种可能,
1位同学报项目,剩余3位同学都报项目共有种可能,
所以.
20.(1)161700种;
(2)9506种;
(3)9604种.
(1)根据题意直接利用组合列式计算即可.
(2)利用分步计数乘法原理结合组合列式计算即可
(3)求出含有1件次品、2件次品的抽法,再利用分类加法计数原理计算作答.
(1)
所求的不同抽法的种数,就是从100件产品中取出3件的组合数,即(种)
所以有161700种不同的抽法.
(2)
从2件次品中抽出1件次品的抽法有种,从98件合格品中抽出2件合格品的抽法有种,则(种),
所以抽出的3件中恰好有 1件次品的抽法有9506种.
(3)
抽出的3件中至少有1件是次品,包括有1件次品和有2件次品两种情况,
由(2)知,有1件是次品的抽法有种,有2件次品的抽法有种,
由分类加法计数原理得:(种),
所以抽出的3件中至少有一件是次品的抽法有9604种.
21.(1)720
(2)1440
(3)144
(4)960
(5)840
小问1:我们可视排好的女同学为一整体有种排法,再与男同学排队即可;
小问2:先将男同学排好,共有种排法,再利用插空法即可;
小问3:根据分步乘法计数原理先排男生再排女生即可;
小问4:先排甲、乙和丙3人以外的其他4人,再把甲、乙看一整体排好,最后把排好的甲、乙这个整体与丙分别插入原先排好的4人的空当中即可;
小问5:从7个位置中选出4个位置把男生排好,则有种排法.再在余下的3个空位置中排女生按身高排列有一种排法,即可求解.
(1)
3个女同学是特殊元素,她们排在一起,共有种排法.我们可视排好的女同学为一整体,
再与男同学排队,这时是5个元素的全排列,应有种排法.由分步乘法计数原理,得共
有(种)不同的排法;
(2)
先将男同学排好,共有种排法,再在这4个男同学之间及两头的5个空当中插入3个女
同学有种方案,故符合条件的不同的排法共有(种);
(3)
3个女同学站在中间三个位置上的不同排法有(种);
(4)
先排甲、乙和丙3人以外的其他4人,有种排法;
由于甲、乙要相邻,故再把甲、乙排好,有种排法;
最后把排好的甲、乙这个整体与丙分别插入原先排好的4人的空当中有种排法.
故总共有(种)不同的排法;
(5)
从7个位置中选出4个位置把男生排好,则有种排法.再在余下的3个空位置中排女
生,由于女生要按身高排列,故仅有1种排法.故总共有(种)不同的排法.
22.(1)1225
(2)161700
(3)20
根据组合的性质,对每一小问逐一运算即可.
(1)
(2)
(3)
答案第1页,共2页
答案第1页,共2页