2013版 第七章 模型与原型的制作(3个课件)

文档属性

名称 2013版 第七章 模型与原型的制作(3个课件)
格式 zip
文件大小 11.7MB
资源类型 教案
版本资源 通用版
科目 通用技术
更新时间 2013-03-26 23:15:07

文档简介

课件34张PPT。第七章 模型与工艺 总 结1、模型及其功能模型是根据实物、设计图样或构思,按比例、生态或其他特征制成的与实物相似的一种物体。 设计者一般通过模型来呈现产品的设计方案。 根据设计的要求,可先后制作
草模、概念模型、结构模型、功能模型和展示模型等多种模型。 9.下列关于模型的说法不正确的是 ( )
A.模型制作仅是单纯的表现外观、结构造型
B.模型使设计对象具体化
C.模型帮助分析设计的可能性
D.模型制作在产品设计的不同阶段有不同的作用,是一种很重要的技术方法1、草模
采用立体模型将设计构思简单地表示出来
2、概念模型
从整体上表现产品造型的整体概念。
3、结构模型
用于研究产品造型与结构的关系,
4、功能模型
各种性能以及人机关系,分析各部分组件尺寸与机体的相互配合关系
5、展示模型
采用真实材料,按照准确的尺寸,做成的与实际产品几乎一致的模型。 主要用于研究产品造型与结构的关系是以下哪种模型?( )
A.草模 ? ?? ?? ?? 
B.功能模型 ? ?? ?
C.结构模型 ? ?  
D.展示模型2、金属材料的加工工艺 一般来说,金属材料的加工包括划线、锯割、切削等工序。要在厚铁板上指定位置打一个孔,需要用到的工具 ( )
①划规 ②直尺 ③划针 ④样冲 ⑤手锯 ⑥台钻 ⑦钢锉 ⑧铁锤
A、①②③④⑥⑧
B、②③④⑥⑧
C、①④⑥⑦⑧
D、②③④⑤⑥⑦划线
划线的一般步骤为:
(1)划出基准;(2)划尺寸线;(3)划轮廓线;(4)冲眼。
金属加工中常用的划线工具有
划针、钢直尺、角尺、划规、样冲等。金属加工中常用
用做划直线的导向工具用于量取材料的尺寸、测量工件等用于在钻孔中心处冲出冲眼,防止钻孔中心滑移划线时要压紧直尺,防止发生移动12.看图识工具并说明它的用途 名称: 用途: 名称: 用途: 8.金属材料划线的一般步骤为(? ??) ①冲眼? ?②划尺寸线?
?③划轮廓线? ?④划出基准 A、①②③④? ?? ?B、④②③①? ?? ?
C、④①②③? ?? ???D、④③②① 锯割 起锯方法:
从工件远离自己的一端起锯,起锯时用左手大拇指贴住锯条,起锯角a要小,防止锯齿崩裂。
起锯时行程要短,压力要小,当陷入工件2—3mm时,才能逐渐正常锯割。6.小王在锯割操作中折断了锯条,现在要换新锯条。正确的流程是()
A.旋松螺母→取下断锯条→旋紧螺母→安上新锯条 B.旋松螺母→取下断锯条→安上新锯条→旋紧螺母 C.旋紧螺母→取下断锯条→安上新锯条→旋松螺母 D.旋紧螺母→取下断锯条→旋松螺母→安上新锯条手锯的正确操作方法是( )
A、起锯时锯程要长,推锯加压,回拉不加压
B、起锯时锯程要短,当陷入工件2~3mm时,锯程要长,推锯加压,回拉不加压
C、起锯时锯程要短,推锯不加压,回拉加压
D、起锯时锯程要长,当陷入工件2~3mm时,锯程要长,推锯加压,回拉不加压锉 削 锉削操作要领
1、锉削时要注意身体和手臂动作的协调。
2、在推锉过程中,左手的施压要由大变小,右手的施压要由小变大,使锉刀平稳而不上下摆动。钻孔的操作步骤和操作要求如下:
1、划线定位 用中心冲在工件上冲中心点。
2、装夹工件 用台虎钳或手钳夹紧工件。
3、装夹钻头 选择合适的钻头,将其正直地装夹在钻头夹上,并装紧钻头。
4、钻 孔 扳动手柄,对准冲眼,启动台钻,加压进给。2.用台钻打孔的工序正确是:①装夹工件 ②钻孔
③装夹钻头 ④划线定位
A.①③②④ B.①②③④
C.④②③① D. ④①③②A、用台虎钳夹住工件时,应松紧适当
B、为了工件的挫削面平整。挫削时双手用力时要始终不变以保持平衡
C、用嘴吹或用手抹带铁屑的工件
D、装锯条时,锯齿方向应朝向人。11、下列操作正确的是( )在工件上制作内螺纹称为攻丝。它使用的工具是丝锥和丝锥扳手。
在工件上制作外螺纹称为套丝。它使用的工具是板牙和扳手。攻丝工作流程
底孔倒角→选择丝锥→装夹工件→攻内螺纹套丝工作流程 扩孔→选择板牙→装夹工件→套外螺纹 35、在钢板上加工螺纹孔,用到的工具是:()
A、钢锯和丝锥 B、锉刀和丝锥
C、钻头和丝锥 D、板牙和丝锥4、[表面处理](1)表面刷光
(2)喷涂油漆
(3)镀层10.选出下列四幅图中错误的操作制作模型制作步骤:1.选材。
2.准备工具。
3.画线。
4.加工。
5.装配。
6.表面处理。
7.评价和试验。
8.修改成型。 1、模型的制作一般要经历以下步骤:
(1)表面处理 (2)准备工具和设备
(3)选择合适的材料 (4)加工和装配
(5)划线。其中正确的制作顺序是 ( )
A、(1)(2)(3)(4)(5)
B、(5)(4)(3)(2)(1)
C、(3)(2)(5)(4)(1)
D、(4)(5)(3)(2)(1)自行设计题1、自行设计一个多功能课桌,满足工作、学习各种需要;
2、绘制三维设计图;并简单文字说明;
3、写出设计模型制作过程课件33张PPT。模型一、模型及其功能 1、模型和原型
模型(Model)是根据实物、设计图样或构思,按比例、生态或其他特征制成的与实物相似的一种物体。
原型(prototype)可以是产品本身,也可以是在产品生产之前制作的与产品大小相同、使用功能一致的物体。
2、制作模型的优点:制作成本低、便于修改神州飞船中的模拟人 2008北京奥运会主会场"神舟飞船"模型张衡设计的浑天仪汽车模型小区住宅模型3、模型的功能 (1)、模型使设计对象具体化。
(2)、模型帮助分析设计的可能性。 案例:《大东方号》事例 19世纪50年代,英国设计制造了一艘以庞大蒸汽发动机为动力的铁壳轮船——“大东方号”。
但是,“大东方号”并没有进行模型制作就投入了生产。结果,由于动力设备与庞大船体的动力需要不匹配,首航便宣告失败。 “ 大东方号”首航失败说明了什么? 制造船舶时一定要制造模型进行试验。
根据设计的要求,模型可分为:二、模型的分类 1、草模
2、概念模型
3、结构模型
4、功能模型
5、展示模型二、模型的分类 1、草模 在设计初期阶段草模可以把设计构思用立体模型简单的表示出来,供设计人员深入探讨时使用。 2、概念模型 概念模型用于设计构思初步完成之后。
在草模的基础上,用概括的手法表示产品的造型风格、布局安排、人机关系等,从整体上表现产品造型的整体概念。 法拉利公开设计大赛最终入围的20件作品3、 结构模型 为了研究产品造型与结构的关系制作的模型。 4、 功能模型 顾名思义主要用于研究产品的各种性能以及人机关系。 5、展示模型 采用真实材料,用准确的尺寸,做成与实际产品几乎一致的模型或按一定比例缩放的模型,作为产品的样品进行展示,以便提供实体形象。 1、制作纸青蛙模型,要求功能上能够跳跃过一个粉笔擦。练习 2、用硬纸板、塑料吸管、细竹棒(或木棒)和螺钉等材料,设计制作一个海豹顶球的模型装置,使凸轮每转一圈,海豹就自动地把球顶起来,然后球又回落到原处。
第十章 模型试验基础
处理水力学问题的一个基本途径是直接应用前面所述的描述液体运动的基本方程进行求解,但由于液流运动基本方程的非线性和液流边界条件的复杂性,在求解这些基本方程时,往往在数学上会遇到难以克服的困难。因而不得不寻求其他分析途径和实验方法来解决工程中所遇到的水力学问题。而量纲分析和液流相似理论将为解决这一类问题提供十分有效的手段。
本章的重点在于:应用量纲分析方法,在观测水力现象的基础上,建立其影响因素间的正确关系;以及从液流相似原理出发,在建立各种力的相似条件下,得到所应遵从的各种相似准则和由此而得出的各种比尺关系,为力学问题的试验研究,提供理论依据。
§10-1 量纲、单位和无量纲数
1.量纲和单位
结论中已经提到,水力学中常见的物理量有长度、时间、速度、质量、力等等。每一个物理量都具有数量的大小和种类的差别。表征物理量的性质和类别的符号称为物理量的量纲(或因次)。例如,长度和时间就是不同性质的量。而管径d和水力半径R都是具有长度性质的同一类的物理量,它们在性质上都具有长度的量纲。
量度各种物理量数值大小的标准,称为单位。如长度的单位用米、厘米、尺、英尺等;时间的单位是秒、分、时等。虽然测量某一类物理量的单位可以有不同的选择,表示该物理量的数值大小也就不同,但是所有同类物理量均具有相同的量纲。所以,量纲是物理量“质”的表征,而单位是物理量“量”的表征。
通常表示量纲的符号为物理量加方括号[]。例如长度L的量纲为[L],时间T的量纲为[T],质量M的量纲为[M]等等。
全部物理量的量纲分为基本量纲和导出量纲两大类。所谓基本量纲指的是这样一组量纲:用它们的组合可以表示其余物理量的量纲,而它们之间却是彼此独立不能相互表示的。其余的量纲可由基本量纲导出,故称为导出量纲。在力学问题中,国际单位制(简称SI)规定[L]、[T]、[M]为基本量纲,对应的基本单位长度用米(m),质量用公斤(kg),时间用秒(s)。力F的量纲[F]可由基本量纲[L]、[T]、[M]直接导出,故[F]为导出量纲。但在工程界,80年代以前习惯用[L]、[T][F]作为基本量纲,简称LTF制,而将质量的量纲[M]作为导出量纲。LTF制现已被LTM基本量纲所取代。
在力学中通常遇到三方面的物理量。
几何学量:如长度L、面积A、体积V等。
动力学量:如速度u、加速度a、角速度ω、流量Q、运动粘性系数ν等。
运动学量:如质量m、力F、密度ρ、动力粘性系数μ、切应力τ、压强p等。
2.有量纲数和无量纲数
力学中的某个物理量U,它的量纲可以用[L]、[T]、[M]这一组基本量纲的组合来表示,即
(10-1-1)
式中基本量纲的指数α、β、γ的数值由该物理量的性质来决定。
例如,当U为速度时,α=1,β=-1,γ=0;当U为力时α=1,β=-2,γ=1等等。公式(10-1-1)称为量纲表达式,只要指数α、β、γ中至少一个不为零,则说该物理量U是有量纲的量。
当α≠0,β=0,γ=0时,称为几何量;而当α=β=γ=0时为无量纲量。
当β≠0,γ=0时,称为运动学的量。
当γ≠0时,称为动力学量。
当α=β=γ=0,则称此物理量U为无量纲量,记为
(10-2)
此时物理量U的数值与基本单位(L,M,T)的选择无关,而为一个纯粹的数。它在所有单位制中保持同样的数值。例如,底坡i是落差对流程长度的比值i=Δh/L,其量纲为[L/L]=[L0]=[1],即为无量纲数。圆周率π为圆的周长与直径之比,在任何单位制中其数值都不变化;此外,无量纲数还可以是几个物理量综合比较后的结果。例如前面所介绍过的雷诺数Re=、佛汝德数Fr=等,都是无量纲量(数)。无量纲量的值与单位的选择无关(组合成无量纲量的各物理量所选的单位必须一致),这是无量纲数的重要特点之一。
§10-2 量纲齐次性原理和量纲分析法
1.量纲齐次性原理
在各种物理现象中,各物理量存在着一定关系,可表示为物理方程。如果一个物理方程完整地反映了某一个物理现象的客观规律,则方程中的每一项和方程的两边一定具有相同的量纲,物理方程的这种性质就叫做量纲的齐次性原理。例如,作为推导力学相似准则基础的牛顿第二定律
F=ma
显然方程量纲是相同的,因为当采用基本量纲为M、L和T时,方程左边力的量纲是MLT-2,而方程右边的量纲也是MLT-2,即方程两边的量纲是相同的。
众所周知,正确的物理规律不应随单位的选择而改变其形式。所以,为了正确地反映客观规律,物理公式可以由无量纲形式组成:或者说,它们能够化为无量纲形式。由于量纲的齐次性,任何完整的物理公式都是可以化为无量纲形式的。
例如,理想液体伯诺里能量方程
可改写为
+=
上式各式均为无量纲量。
2.量纲分析法
由于实际液流运动的复杂性,有时候通过实验或现场观测可得知液流运动的若干因素,但是得不出这些因素之间的指数关系式。在这种情况下,就可利用量纲分析法,快速得出各种因素之间的正确结构形式,这是量纲分析法最显著的特点和优点。
量纲分析通常采用两种方法:一种称为雷利(L.Rayleigh)法,它适用于那些影响因素较少(≤3)的物理过程。另一种是具有普遍性的方法,称为π定理(Buckingham π-Theorem)。它们都是以量纲一致性原则作基础的。
(1)雷利法
雷利法的意义是直接应用量纲齐次性原理建立物理量间的指数关系式,其基本步骤通过下面的实例进行说明。
例10-1 一个质量为m的物体从空中自由降落,经实验认为其降落的距离s与重力加速度g及时间t有关。试用雷利法得出自由落体的公式。
解:假定此自由落体的距离s与重力加速度g,时间t及物体质量m有关,而其关系式可以写成各变量的某种指数的乘积,即
式中比例常数k为纯数。
把上式写成量纲关系式
由量纲齐次性原理,上式方程左右两边的量纲必须一致,从而得:
[L]: 1=x x=1
[T]: 0=-2x+y y=2
[M]: 0=z z=0
将指数x,y,z值代入关系式,得
注意式中质量指数为零,表明距离应与质量无关,常数k由实验确定。
例10-2 由实验观察得知,矩形量水堰的过堰流量Q与堰上水头H0,堰宽b,重力加速度g等物理量之间存在着以下关系:

式中比例系数k为一纯数,试用量纲分式法确定堰流流量公式的结构形式。
解 由已知关系式写出其量纲关系式?

由量纲一致性原理得
[L]: α+β+γ=3
[T]: -2β=-1
联解以上两式,可得 β=1/2 α+γ=2.5
根据经验,过堰流量Q与堰宽b的一次方成正比,即α=1,从而可得γ=3/2。将α、β、γ的值代入量纲关系式,并令m=K/,?得
?Q=mb
此式为堰流基本公式(8-2-1),从中可看出,量纲分析法开拓了研究此问题的途径。
(2)π定理
另一种具有普遍性的量纲分析方法,叫做π定理,是1915年由白金汉(E.Buckinghan)提出的,故又叫白金汉定理。其基本意义可表述为:
任何一个物理过程,如包含有N个物理量,涉及到r个基本量纲,则这个物理过程可由(N-r)个无量纲量关系式来描述。因这些无量纲量用πi(i=1,2,3…)表示,故简称为π定理。
设影响物理过程的N个物理量为x1,x2,…,xN,则这个物理过程可用一完整的函数关系式表示如下
(10-2-1)
设物理过程中的N个物理量包含有r个基本量纲。根据国际单位制,水力学中的基本量纲一般是[L]、[T]、[M],即r=3,因此可在N个物理量中选出3个基本物理量,这三个基本物理量应满足①包含所有物理量的基本量纲;②它们之间的量纲相互独立。作为基本量纲的代表。这3个基本物理量一般可在几何学量、运动学量和动力学量中各选一个即可。然后,在剩下的(N-r)个物理量中每次轮取一个分别同所选的三个基本物理量一起,组成(N-r)个无量纲的π项,然后根据量纲分析原理,分别求出。因此原来的方程式(10-2-1)可写成
F()=0 (10-2-2)
这样,就把一个具有N个物理量的关系式(10-2-1)简化成具有(N-r)个无量纲数的表达式,这种表达式一般具有描述物理过程的普遍意义,可作为对问题进一步分析研究的基础。
例10-3 实验表明,液流中的边壁切应力τ0与断面平均流速v,水力半径R,壁面粗糙度Δ,液体密度ρ和动力粘度μ有关,试用π定理导出边壁切应力τ0的一般表达式。
解:根据题意,此物理过程可用函数表达式F()=0来表示。
选定几何学量中的R,运动学量中的v,动力学量中的ρ作为基本物理量,本题中物理量的个数N=6,基本物理量r=3,因此,可组成N-r=6-3=3个无量纲数的方程,即
比较上式中每个因子的分子和分母的量纲,它们应满足量纲齐次性原则。
F1=0
第一个因子的量纲关系有:


由等式两边量纲相等,得到?
[M]:x1=1
[L]:-3x1+y1+z1=-1
[T]:-y1=-2
联解得: 求得: π1=
第二个因子的量纲关系为

由等式两边量纲相等,得
[M]:x2=1
[L]:-3x2+y2+z2=1
[T]:-y2=-1
联解得:
求得:
仿此,再求得:
因此,对于任意选取的独立的物理量ρ,v,R,上述物理量之间的关系
F(π1,π2,π3)=0
无量纲量ρvR/μ即雷诺数Re,而Δ/R为相对粗糙度。上式也可以写成
或 ?
这就是液流中边壁切应力τ0与流速v,密度ρ,雷诺数Re,相对粗糙度Δ/R之间的关系式。这里只是由量纲分析求得的量纲关系,至于f(Re,Δ/R)的具体关系,必须通过物理模型试验来确定,本例题已在第四章讨论水头损失时,给出了它的实验研究成果。
通过以上分析可知,在应用雷利法和π定理进行量纲分析时,都是以量纲齐次性原理作为基础的。
在水力学中当仅知道一个物理过程包含有哪些物理量而不能给出反映该物理量过程的微分方程或积分形式的物理方程时,量纲分析法可以用来导出该物理过程各主要物理量之间的量纲关系式,并可在满足量纲齐次性原理的基础上指导建立正确的物理公式的构造形式,这是量纲分析法的主要用处。尽管量纲分析法具有如此明显的优点,但其毕竟是一种数学分析方法,具体应用时还须注意以下几点:
(1)在选择物理过程的影响因素时,绝对不能遗漏重要的物理量,也不要选得过多、重复、或选得不完全,以免导致错误的结论。
(2)在选择三个基本物理量时,所选的基本物理量应满足彼此独立的条件,一般在几何学量,运动学量和动力学量中各选一个。
(3)当通过量纲分析所得到物理过程的表达式存在无量纲系数时,量纲分析无法给出其具体数值,只能通过实验求得。
(4)量纲分析法无法区别那些量纲相同而物理意义不同的量。例如,流函数ψ,势函数φ,运动粘度ν,它们的量纲均为[L2/T],但其物理意义在公式中应是不同的。
§10-3 相似原理
1.流动现象相似的原理
许多水力学问题常常需要进行实验和模拟。如何进行实验以及如何把实验成果推演到实际问题中去?相似原理(Similarity Theory)作为实验和模拟的理论依据就是回答这类问题的。液流相似原理不仅是试验研究的理论根据,同时也是对液流现象进行理论分析的另一个重要手段,其应用非常广泛,从局部流动现象,到大气环流,海洋流动等,都可借助液流相似原理的理论来探求其运动规律。在水力学的研究中,从水流的内部机理直至与水流接触的各种复杂边界,包括水力机械、水工建筑物等多方面的设计、施工、与运行管理等有关的水流问题,都可应用水力学模型实验来进行研究。即在一个和原型水流相似而缩小了几何尺寸的模型中进行实验。如果在这种缩小了几何尺寸的模型中,所有物理量都与原形中相应点上对应物理量保持一定的比例关系,则这两种流动现象就是相似的,这就是流动相似的基本涵义。
两个相似的水流系统中,每一种物理量的比尺常数都有各自的数值,例如长度L、速度u、力F的比尺常数可分别为
式中角标“p”表示原型(Prototype)量,“m”表示模型(Model)量,而λl,λu,λF分别表示各种物理量的相似比例常数,称为各种量的比尺(Scale),它们分别表示原型量与对应的模型量之比。例如:λl称为长度比尺,λu称为速度比尺,λF称为力的比尺。比尺越大,模型越小。
2.液流相似的特征
表征液流现象的基本物理量一般可分为三类:第一类是描述液流几何形状的量,如长度、面积、体积等;第二类描述液流运动状态的量,如时间、速度、加速度、流量等;第三类是描述液流运动动力特征的量,如质量、动量、密度等。因此,两个系统的相似特征可用几何相似、运动相似和动力相似以及初始条件和边界条件保持一致来描述。
(1)几何相似(Geometric Similarity)
如果两个液流系统中对应点上的每一种几何量都存在着固定的比例关系,则这两个流动称为几何相似的。保证了这一点,就可使得原型和模式两个流场的几何形状相似。
如以l表示某一几何长度,其长度比尺(Length Scale)为
(10-3-1)
由此可推得相应的面积A和体积V的比例,即
(10-3-2)
(10-3-3)
几何相似时,对应的夹角相等;严格地说,原型与模型表面的粗糙度也应该同其他长度尺度一样成相同的比例,而实际上往往只能近似地做到这点。
(2)运动相似(Kinematic Similarity)
运动相似是指液体运动的速度场相似。也就是指两个流场各相应点(包括边界上各点)的速度u方向相同,其大小成一固定比例λu。如以up表示原型某一点的速度,um表示模型相应点的速度,则速度比尺(Velocity Scale)为
注意到流速是位移对时间t的微商,令λt为相应点处液体质点运动相应位移所需时间的比例
(10-3-4)
则有
(10-3-5)??
分析式(10-3-5)看出长度比尺λl已由几何相似定出,因此运动相似就已规定了时间比尺。
由于各相应点速度成比例,所以相应断面的平均流速有同样的比尺,即
同样,在运动相似的条件下,流场中相应位置处液体质点的加速度也是相似的,即
(10-3-6)
(3)动力相似(Dynamic similarity)
若两液流相应点处质点所受同名力F的方向互相平行,其大小之比均成一固定λF值,则称这两个液流是动力相似。所谓同名力是具有同一物理性质的力,例如两水流相应点所受的压力。于是力的比尺(Force Scale)
(10-3-7)
若作用在原型和模型上相应液流质点Mp和Mm上的力分别为F1p、F2p、F3p和F1m、F2m、F3m。根据达伦贝尔原理,对于任一运动的质点,设想加上该质点的惯性力,则惯性力与质点所受主动力平衡,构成封闭的力多边形。即动力相似就表征为液流相应点上的力多边形相似,其相应力(即同名力)成比例。

?? (10-3-8)??
以上就是流动相似的含义。表明:凡流动相似的=液流,必是边界相似、运动相似和动力相似的流动。这三种相似是相联系的,几何相似是运动相似和动力相似的前提,动力相似是决定二个水流运动相似的主导,运动相似是几何相似和动力相似的表现。
(4)初始条件和边界条件的相似
初始条件和边界条件的相似是保证相似的充分条件,正如初始条件和边界条件是微分方程的定解条件一样。在非恒定流中,初始条件是必需的;在恒定流中,初始条件则失去实际意义。边界条件在一般条件下,可分为几何的、运动的和动力的三个方面,如固体边界上的法线流速为零,自由表面上的压强为大气压强等。所谓初始条件和边界条件的相似是指模型及原型都应满足的条件。?
§10-4 液流相似准则
根据几何相似、运动相似和动力相似的定义,得到长度比尺λl、速度比尺 λu或λv、力的比尺λF等,这些比尺之间有一定的约束关系。这些约束关系是由力学基本定律所决定的。
流动由于运动的惯性引起惯性力,企图维持原有运动状态。主动力有重力、粘滞力、压缩性所引起的弹性力以及液体的表面张力等,都是企图改变运动状态的力。流动的变化就是惯性力与各主动力共同作用的结果。因此,各种力之间的比例关系应以惯性力为一方,来相互比较。在两相似的流动中,这种比例关系应保持固定不变。
惯性力I为m·a=ρVa(ρ为密度,V为体积),则惯性力之比尺为
(10-4-1)
若某一企图改变运动状态的力为F,则两相似流动的F力之比尺为
根据动力相似有
λF=λI

(10-4-2)??
根据上式比尺的关系有
λF= (10-4-3)
此式表明了两相似流动力的比尺λF决定于λρ、λl和λv。
根据式(10-4-3)也可写成
(10-4-4)
令 Ne= (10-4-5)
Ne称为牛顿数(Newton Number),它表示了液流所受的物理力与惯性力之比。
式(10-4-5)表示两相似流动的牛顿数应相等,这是流动相似的重要标志和准则,称为牛顿相似准则(Newton's Similarity Criterion)。
现面分析讨论粘性力、重力、压力、表面张力、弹性力等的相似关系。
1.雷诺准则(Reynolds Criterion)
若作用在相应质点上的粘性阻力T成一固定比例λT,根据牛顿内摩擦定律式
? (10-4-6)??
两液流运动粘性系数之比。
要满足粘性阻力的动力相似,就必须要求作用在任意相应质点上的惯性力比与粘性阻力比为同一比例常数,即
λI=λT

因而得
?? (10-4-7)??
此式说明,若需满足粘性阻力相似,λu、λl、λν三相似常数的选择受式(10-18)控制。
上式也可写成
?
即 (Re)p=(Re)m (10-4-8)
Re=为雷诺数。此式说明两流动的粘性相似时,原型与模型的雷诺数相等,这就是雷诺准则。也称粘性力相似准则(Viscosity Force Similarity Criterion)。
2.佛劳德准则(Froude Criterion)
若作用在两液流相应质点上的重力G成一固定比例λG,
(10-4-9)??
式中 ——两液流相应质点重力加速度之比,通常比值为1。
要满足动力相似,就必须要求作用在相应质点上的重力与惯性力之比为同一比尺。即式(10-4-9)应等于式(10-4-1)
λG=λI

因而得
(10-4-10)??
此式说明,若须满足重力相似,λu、λl、λg三比例的选择受该式控制,其中只有两个是独立的。上式一般可写成:
(10-4-11)??
式(10-4-11)表明:两个流动相应点的佛汝德数相等,这就是佛汝德准则,也称重力相似准则(Gravity Force Criterion)。
3.欧拉准则(Euler Criterion)
若作用在相应质点上的动水总压力成一固定的比例λP,根据P=pA
(10-4-12)??
式中 ——两液流相应点动水压强之比。
要满足动力相似,就必须要求作用在相应质点上的动水压力与惯性力之比为同一比值,即式(10-4-12)应等于式(10-4-1):
λP=λI

因而得
(10-4-13)
此式说明,若须满足动水压力相似,λp、λu与λρ(原型与模型通常采用同一液体,即λρ=1)三比例的选择受该式的控制,其中只有两个可以是独立的。上式一般可写成
(10-4-14)
或 (Eu)p=(Eu)m
Eu称为欧拉数(Euler Number),欧拉数的物理意义在于它反映了压力与惯性力的比值。式(10-4-14)表明:两个流动相应点的欧拉数相等,这就是欧拉准则,也称压力相似准则(Pressure Force Similarity Criterion)。
有时以液流中相应两点压强差Δp代替式(10-4-14)中的压强p,于是欧拉数为
在此还应指出,只要满足了雷诺准则或弗劳德准则,欧拉准则将自动满足。
4.紊流阻力相似准则(Turbulent Resistance Fore Similarity Criterion)
在分析阻力的时候,已经注意到水流阻力主要由切应力所引起,而切应力包括粘滞切应力与紊流附加切应力两部分。由于两者的性质不同,所引起的阻力性质即相似准则也不同。当水流的雷诺数较小,粘滞性阻力占主要地位,此时雷诺相似准则起主导作用;当水流雷诺数较大时,紊流阻力的作用随之增大,粘滞性阻力的作用相对减少;当雷诺数很大时,水流紊动充分发展,水流阻力达到阻力平方区,此时紊流附加阻力占主导地位,粘滞阻力的作用可忽略不计,雷诺相似准则在此种情况已不适用。下面讨论充分发展的紊流阻力相似准则。
由于流动的紊流边壁阻力可表示为切应力乘其作用面积,即
Fτ=τ0χl (10-4-15)
在例10-3中,通过量纲分析已经得到切应力的关系式为τ0=f(Re,Δ/R)ρv2以此代入上式,并引入特征长度,则
Fτ=f(Re, Δ/R)ρl2v2 (10-4-16)
在第四章中,已对f(Re,Δ/R)作过深入的分析:当Re数越大,意味着粘滞性作用越小;当Re大到一定程度后,粘滞性作用即可不予考虑,以函数f(Re,Δ/R)表示的阻力系数与Re数不再有依赖关系,只是相对光滑度R/Δ(相对粗糙度的倒数)的函数。因此
(10-4-17)
写成比尺关系为
(10-4-18)
将式(10-4-18)与以比尺表示的牛顿相似准则式(10-4-3)相比较,可得

λf=1 (10-4-19)
因此,如要保证两个液流系统的紊流阻力相似,则必须要求原型和模型中的阻力系数f(Δ/R)相等,亦即两个液流系统的流动都必须处于阻力平方区。或者说,在两个相似的液流中,只要流动的Re数足够大,保证水流进入阻力平方区,原型与模型保持了相对粗糙度相等,则无需再考虑Re数是否相等,阻力作用将自动相似。这种流区称为自动模型区,简称为自模区。
根据常用的谢才公式?
其中谢才系数C与阻力系数f的关系为f=g/C2。由于λf=1,即=1,又因λg=1,故
(10-4-20)
即紊流阻力相似要求原型与模型的谢才系数相等,即
Cp=Cm (10-4-21)
根据曼宁公式C=,可知,则明渠或河道糙率n的比尺为
或 (10-4-22)
因此,在紊流充分发展的情况下,若要保证原型与模型的紊流阻力相似,就要保证两个流动系统的阻力系数f(即相对粗糙程度Δ/R)或谢才系数C相等。或是保证两者的糙率n有式(10-4-22)的关系。
5.其他准则(Other Criterion)
若作用在相似液流上的同名力不止以上三类,就还会引出另外一些需要满足的准则。例如:
1)若考虑到液体运动时的表面张力作用,由液体所受到的惯性力与表面张力之比,可得韦伯数(We)。要满足两流动表面张力相似,必须保证韦伯数(Weber Number)相等,即
(10-4-23)
或 (We)p=(We)m
式中 σ——表面张力系数。
2)若考虑到液体运动的弹性作用时,由液体所受到的惯性力与弹性力之比,可得柯西数(Ca)。如两流动弹性力相似,必须保证柯西数(Cauchy Number)相等,即
(10-4-24)
或 (Ca)p=(Ca)m
式中 K——液体的体积弹性系数。
因为声音在流体中传播速度(音速)C=,代入柯西数
?
Ma称为马赫数(Mach Number)。在空气流速接近或超过音速时,要保证流动相似,还需保证马赫数相等,即
(10-4-25)??
或 (Ma)p=(Ma)m
回顾本节叙述的相似准则可知:?
(1)相似数(如Re,Fr等)都是一些物理量组合的无量纲量。
(2)两个相似流动的各个相似数之间存在互相制约关系。
(3)对于受粘性力、重力和压力同时作用的两个流动,在忽略表面张力及压缩性时,要同时满足雷诺、佛汝德和欧拉准则才能实现动力相似。然而,动力相似是指相应点上上述三力与惯性力构成的封闭力多边形相似,那末只要惯性力及其它任意两个同名力相似(方向相同,大小成比例),另一个同名力必将相似。由于压强通常是待求的量,所以只要相应点的惯性力、粘性力和重点相似,压强会自行相似。换言之,当雷诺准则、佛汝德准则得到满足,欧拉准则可自行满足。因而,雷诺准则、佛汝德准则称为独立准则,欧拉准则称为导出准则。
§10-5 模型实验
1.模型律的选择
若仅满足粘性阻力(即两液流的雷诺数相等),由式(10-4-7)求得两液流粘性系数的比尺λν应为
λν=λuλl (10-5-1)
这就是说λν取决于λu与λl的乘积,不能任意选择;反之,如λν已经确定(通常等于1,即原型与模型的运动粘性系数相同),则λu与λl两个比值就只有一个可以任意确定,若模型尺寸较实物缩小λl倍,那模型中的液流流速,就应较原型的流速放大λl倍。显然,这一要求不难实现,只要模型中流量较实物中的流量减小λl倍即可达到。管中的有压流动,以及飞行体在空气压缩性影响可以忽略的速度下飞行等的相似都仅仅依赖于雷诺准则。
若仅满足重力相似,此时就要保证模型的佛汝德数与原型的相等。设λg=1(即重力加速度相等),由式(10-4-10)得两液流流速的比尺应为
(10-5-2)
这就是说λu取决于λl的平方根,不能任意选择。若模型尺寸较原型尺寸缩小λl倍,即模型中的流速就应较原型的流速小倍。显然,这一要求不难实现,只要模型中流量较实物中流量减小倍即可达到。自由式孔口出流,坝上溢流,围绕桥墩的水流以及大多数的明渠流动都是重力起主要作用,一般应首先受佛汝德准则控制。
若粘性阻力与重力同时相似,也就是说要保证模型和原型的雷诺数和佛汝德数一一对应相等。在这种情况下,若模型与原型采用同一种介质,由雷诺数相等条件,有
由佛汝德数相等条件,有
显然,λl与λu的关系要同时满足以上两个条件,则λl=1,即模型不能缩小,失去了模型实验的价值。若要同时满足雷诺与佛汝德准则,必须
(10-5-3)?
这就是说,实现流动相似有两个条件:一是模型流的流速应为原型流流速的倍,二是必须按长度比尺的二分之三次方来选择粘性运动系数的比值λν,后一条件目前还难实现。
为了解决这一矛盾,就需要对粘性阻力的作用和影响作深入的分析。在第四章讨论水流阻力得知,当雷诺数大到一定的程度后,阻力相似并不要求雷诺数相等。只要单独考虑到佛汝德准则即可。
2.模型的设计
在模型设计中通常是根据试验场地、供水设备和模型制做的条件选定出长度比例尺λl,然后要求选定的λl缩小原型的几何尺寸,得出模型流动的几何边界。在一般情况下模型液体就采用原型液体,即λρ、λν为1。然后按所选用的准则(如雷诺准则或佛汝德准则)确定相应的速度比例尺λv,这样可按下式定出模型的流量比尺
或? (10-5-4)
根据这些步骤便可实现原型、模型流动在相应准则控制下的流动相似。
上面谈到几何相似是液流相似的前提,意即长度比尺λl不论在水平方向或竖直方向都是一致的,这种几何相似模型称为正态模型(Normal Model)。但是,在河流或港口水工模型中,水平长度比值较大,如果竖直方向也采用这种大的长度比值,则模型中的水深可能很小。在水深很小的水流中,表面张力的影响将很显著,这样模型并不能保证水流相似。为了克服这一困难,可取竖直线性比值较水平线性比值稍小,而形成了广意的“几何相似”,这种水工模型称为变态模型(Abnormal Model)。变态模型改变了水流的流速场,因此,它是一种近似模型,为了保证一定程度的精度,竖直长度比值不能与水平长度比值相差太远。
以上介绍的是相似现象存在于同类现象之中,称为“同类相似”。相似也可存在于不同类现象之间,如力和电的相似,这种相似称为异类相似。在第九章中已有介绍。
例10-4 混凝土溢流坝如图所示,其最大下泄流量Qp=1200m3/s,几何比尺λl=60,试求模型中的最大流量Qm为多少?如在模型中测得坝上水头Hm=8cm,模型中坝趾断面流速vm=1m/s,试求原型溢流坝相应的坝上水头Hp及收缩断面(坝趾处)流速vp为多少?
图10-1 溢流坝流动
解:溢流坝过坝水流主要受重力作用,按重力相似准则,其比尺关系为 λFr=1
流量比尺
流速比尺
模型流量 =1200/605/2=0.043m3/s=43l/s
原型坝上水头 Hp=Hm·λl=8×60=480cm=4.8m
原型坝趾收缩断面处的流速 vp=vmλv=vmλ11/2=1×601/2=7.75m/s
例10-6 有一混凝土溢流坝的拟定坝宽bp=210m,根据调洪演算坝顶的设计泄流量Qp=3500m3/s,坝面糙率np=0.018。现需一槽宽bm=0.3m且只能提供最大流量为20l/s的玻璃水槽中做断面模型试验,试确定实验的有关比尺并用阻力相似准则校核模型的制造工艺是否满足要求。
解:由于溢流坝溢流的作用力主要为重力,模型设计按重力(佛汝德)相似准则决定比尺,但因原型溢流坝较长,现只需做断面模型试验。根据,,故可先按单宽流量进行比较以确定长度比尺。
原型的单宽流量 =166.7l/s·cm?
模型水槽中的最大单宽流量为=0.667l/s·cm?
因此有长度比尺 ?=39.67
选取 λl=40
由于坝面水还也受到边壁阻力的影响,因而在确定比尺后还应考虑阻力相似准则以核定模型的制造工艺是否能满足糙率的要求:
=0.00973≈0.01
模型的表面选用刨光的木板可以达到这一糙率要求,故选定λl=40是可行的。
最后确定出相应的其它比尺:
注意此时30cm宽的水槽相当于原型中的坝段宽度为
bp=bm·λl=0.3×40=12m
例10-7 有一直径为15cm的输油管,管长10m,通过流量为0.04m3/s的油。现用水来作实验,选模型管径和原型相等,原型中油的运动粘度ν=0.13cm2/s,模型中的实验水温为t=10℃。(1)求模型中的流量为若干才能达到与原型相似?(2)若在模型中测得10m长管段的压差为0.35cm,反算原型输油管1000m长管段上的压强差为多少?(用油柱高表示)?
解: (1)输油管路中的主要作用力为粘滞力,所以相似条件应满足雷诺准则,即
因λd=λl=1,故λv=λν=υp/υm
已知υp=0.13cm2/s,而10℃水的运动粘度查表可得:νm=0.0131cm2/s
当以水作模拟介质时, =0.004m3/s
(2)要使粘滞力为主的原型与模型的压强高度相似,就要保证两种液流的雷诺数和欧拉数的比尺关系式都等于1,即要求

故原型压强用油柱高表示为
已知模型中测得10m长管段中的水柱压差为0.0035m,则相当于原型10m长管段中的油柱压差为
=0.345m(油柱高)?
因而在1000m长的输油管段中的压差为0.345×1000/10=34.5m(油柱高)
(注:工程上往往根据每1km长管路中的水头损失来作为设计管路加压泵站扬程选择的依据。)
习 题
10-1 按基本量纲为[L、T、M]推导出动力粘性系数μ,体积弹性系数K,表面张力系数σ,切应力τ,线变形率ε,角变形率θ,旋转角速度ω,势函数φ,流函数ψ的量纲。
10-2 将下列各组物理量整理成为无量纲数:(1)τ、v、ρ;(2)Δp、v、p、γ;(3)F、l、v、p;(4)σ、l、v、ρ。
10-3 作用沿圆周运动物体上的力F与物体的质量m,速度v和圆的半径R有关。试用雷利法证明F与mv2/R成正比。
10-4 假定影响孔口泄流流量Q的因素有孔口尺寸a,孔口内外压强差Δp,液体的密度ρ,动力粘度μ,又假定容器甚大,其它边界条件的影响可忽略不计,试用π定理确定孔口流量公式的量纲关系式。
10-5 圆球在粘性流体中运动所受的阻力F与流体的密度ρ,动力粘度μ,圆球与流体的相对运动速度v,球的直径D等因素有关,试用量纲分析方法建立圆球受到流体阻力F的公式。
10-6 用π定理推导鱼雷在水中所受阻力FD的表示式,它和鱼雷的速度v、鱼雷的尺寸l、水的粘度μ及水的密度ρ有关。鱼雷的尺寸l可用其直径或长度代表。
10-7 水流围绕一桥墩流动时,将产生绕流阻力,该阻力和桥墩的宽度b(或柱墩直径d)、水流速v、水的密度ρ和粘度μ及重力加速度g有关。试用π定理推导绕流阻力表示式。
10-8 试用π定理分析管流中的阻力表达式。假设管流中阻力F和管道长度l、管径d、管壁粗糙度Δ管流断面平均流速v、液体密度ρ和粘度μ等有关。
10-9 试用π定理分析管道均匀流动的关系式。假设流速v和水力坡度J、水力半径R、边界绝对粗糙度Δ、水的密度ρ、粘度μ等有关。
10-10 试用π定理分析堰流关系式。假设堰上单宽流量q和重力加速度g、堰高P、堰上水头H、粘度μ、密度ρ及表面张力σ等有关。
10-11 在深水中进行炮弹模型试验,模型的大小为实物的1/1.5,若炮弹在空气中的速度为500km/h,问欲测定其粘性阻力时,模型在水中的试验速度应当为多少?(设温度t均为20℃)
10-12 有一圆管直径为20cm,输送ν=0.4cm2/s的油,其流量为121 l/s,若在实验中用5cm的圆管作模型实验,假如(1)采用20℃的水或(2)采用ν=0.17cm2/s的空气做试验,则模型流量各为多少?假定主要的作用力为粘性力。
10-13 采用长度比尺为1∶20的模型来研究弧形闸门闸下出流情况,如题5-13图所示,重力为水流主要作用力,试求:
(1)原型中如闸门前水深Hp=8m,模型中相应水深为多少?
(2)模型中若测得收缩断面流速vm=2.3m/s,流量为Qm=45 l/s,则原型中相应的流速和流量为多少?
(3)若模型中水流作用在闸门上的力Pm=78.5N,原型中的作用力是多少?
10-14 一座溢流坝如题5-14图所示,泄流流量为150m3/s,按重力相似设计模型。如实验室水槽最大供水流量仅为0.08m3/s,原型坝高Pp=20m,坝上水头Hp=4m,问模型比尺如何选取,模型空间高度(pm+Hm)最高为多少?
题10-13图 题10-14图
参 考 文 献
1. 徐正凡主编,水力学,高等教育出版社,1986
2. 清华大学水力学教研组,水力学,人民教育出版社,1981?
3. 吴持恭主编,水力学,高等教育出版社,1984?
4. 西南交通大学水力学教研组,水力学(第三版),高等教育出版社,1986?
5. 陈椿庭,关于高坝挑流消能和局部冲刷深度的一个估算公式,水利学报,1963,(2)
6. 杜延龄,许国安,渗流分析的有限元法和点网络法,北京:水利电力出版社,1992
7. 黄克中,环境水力学,中山大学出版社,1997
8. 孔珑,工程流体力学(第二版),水利电力出版社,1997
9. 李建中,高速水力学,西北工业大学出版社,1994
10. 刘润生,水力学,上海交通大学出版社,1987
11. 南京水利科学研究院,水工模型试验(第二版),水利电力出版社,1985
12. 闻德荪主编,工程流体力学(水力学),高等教育出版社,1991
13. 武汉水利电力学院水力学教研室,水力计算手册,水利出版社,1980
14. 武汉水利电力学院水力学教研室堰闸水力特性科研小组,闸孔出流水力特性的研究,武汉水利电力学院学报,1974,(1)
15. 水利电力部第五工程局,水利电力部东北勘测设计院,土坝设计,水利电力出版社,1978
16. 谢象春,湍流射流理论与计算,科学出版社,1975
17. 夏震寰,现代水力学(Ⅰ)(Ⅱ),高等教育出版社,1990
18. 薛禹群,地下水动力学原理,地质出版社,1986
19. 赵文谦,环境水力学,成都科技大学出版社,1986
20. 张红武,吕 昕,弯道水力学,北京:水利电力出版社,1993
21. 张瑞瑾,谢鉴衡,王明甫等编著,河流泥沙动力学,水利电力出版社,1989
22. 阿格罗斯金 И.И,水力学(下),天津大学水利系水力学及水文学教研室译.高等教育出版社,1958
23. 椿东一郎,水力学(Ⅰ),杨景芳译,高等教育出版社,1982
24. 怀特 F.M,粘性流体动力学,魏中磊等译,科学出版社,1992
25. 罗森诺 W.M,传热学基础手册(上),齐欣译,北京:科学出版社,1992
26. 科巴斯 H,水力模拟,清华大学水利系泥沙研究室译,清华大学出版社,1988
27. 李文勋,韩祖恒等译,水力学中的微分方程及其应用,上海科学技术出版社,1982
28. 美国陆军工程兵团,水力设计准则,王诰昭等译,水利出版社,1982
29. 切尔陀乌索夫 M.Д,水力学专门教程,沈清濂译,高等教育出版社,1958
30. Ven Te Chow, Open Channel Hydraulics, McGraw_Hill Book Company Inc., 1959
31. Crand J., The Mathematics of Diffusion(2nd), Oxford University Press, 1975
32. Garslaw H. S. & J. C. Jaeger, Conduction of Heat in Solids(2nd), Oxford University Press, 1959
33. Henderson F. M., Open Channel Flow. Macmillan Publishing Company Inc., 1996
34. Hinze J. O, Turbulence, McGraw_Hill Book Company Inc., 1975
35. Schlichting H., Boundary_Layer Theory (7th ed), McGraw_Hill Book Company Inc., 1979
课件38张PPT。设计的一般过程 1.发现与明确问题  
2.制定设计方案  
3.制作模型或原型  
4.测试、评估及优化  
5.产品的使用和维护 一、模型及其功能
1、模型
2、模型的功能
(1)使设计对象具体化
(2)帮助分析设计的可能性
二、模型在不同阶段的作用
草模 概念模型
结构模型 功能模型
展示模型7-1 模 型选择题
主要用于研究产品的各种性能以及人机关系的是以下哪种模型?( )
A.草模 ? ?? ?? ?? 
B.功能模型 ? ?? ?
C.结构模型 ? ?  
D.展示模型7.2 工 艺一、认识工艺定义:
使各种原材料、半成品加工成为产品的方法和过程。
也叫“做工的艺术”。
一、[金工工艺]:1、划线
2、锯割
3、锉削
4、钻孔
5、连接
6、表面处理等车床 刨床 铣床 磨床 镗床 1、[划线]一般步骤为:
①划出基准线
②划尺寸线
③划轮廓线
④冲眼。
工具一般有:划针、钢直尺、角尺、划规和样冲。 金属加工中常用的划线工具:划针钢直尺划规角尺样冲2、[锯割]操作要领:
1.站位和握锯姿势要正确,
2.推锯加压,回拉不加压,
3.锯程要长,
4.推拉要有节奏 2)锯 割手锯的正确操作方法是( )
A、起锯时锯程要长,推锯加压,回拉不加压
B、起锯时锯程要短,推锯不加压,回拉加压
C、起锯时锯程要短,当陷入工件2~3mm时,锯程要长,推锯加压,回拉不加压
D、起锯时锯程要长,当陷入工件2~3mm时,锯程要长,推锯加压,回拉不加压2、[锉削]1.锉削时要注意身体和手臂动作的协调,
2.在推锉过程中,左手的施压要由大变小,右手的施压要由小变大,使锉刀平衡而不上下摆动。不同锉刀的使用 4)钻孔二要 操作要集中注意力,钻孔要戴防护眼镜,以防钻屑飞出伤害眼睛。
二不不准带手套操作,以防钻头卷住手套而伤害手指;不能用手直接扶持小工件、薄工件,以免造成伤害事故。安全操作警示3、[连接]铆接(铆枪、铆钉)
黏接(万能胶等)
焊接(电焊枪、电焊条)
螺接(螺栓、螺母、螺丝、垫圈)4、[表面处理](1)表面刷光
(2)喷涂油漆
(3)镀层总结 [金工工艺]:1、划线
2、锯割
3、锉削
4、钻孔
5、连接
6、表面处理等要在厚铁板上指定位置打一个孔,需要用到的工具 ( )
①划规 ②直尺 ③划针 ④样冲 ⑤手锯 ⑥台钻 ⑦钢锉 ⑧铁锤
A、①②③④⑥⑧
B、②③④⑥⑧
C、①④⑥⑦⑧
D、②③④⑤⑥⑦在工件上制作内螺纹称为攻丝。它使用的工具是丝锥和丝锥扳手。
在工件上制作外螺纹称为套丝。它使用的工具是板牙和扳手。攻丝工作流程
底孔倒角→选择丝锥→装夹工件→攻内螺纹套丝工作流程 扩孔→选择板牙→装夹工件→套外螺纹 在钢板上加工螺纹孔,用到的工具是:()
A、钢锯和丝锥 B、锉刀和丝锥
C、钻头和丝锥 D、板牙和丝锥作业:自行设计制作一个书架
要求:实用,稳定、美观、有新意。模型的制作步骤
1.选择材料。
2.准备工具。
3.设计图样划线。
4.对材料加工、装配。
5.对模型测试、评估及优化。谢谢,再见!
同课章节目录