人教版七年级下册9.2 一元一次不等式课件(共20张PPT)

文档属性

名称 人教版七年级下册9.2 一元一次不等式课件(共20张PPT)
格式 pptx
文件大小 1.5MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2022-05-09 08:50:10

图片预览

文档简介

(共20张PPT)
9.2 一元一次不等式第1课时
给“一元一次方程”一个完美的定义
1.什么叫一元一次方程 ?
答:只含一个未知数、并且未知数的指数是1的方程.
2.一元一次方程是一个等式,请问一元一次方程的(等号)两边都是怎样的式子?
答:一元一次方程的(等号)两边都是整式、只含一个未知数,并且未知数的指数是1.
有一次,鲁班的手不慎被一片小草叶子割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.
鲁班在这里就运用了“类比”的思想方法发明了锯子,“类比”也是数学学习中常用的一种重要方法.
1.什么叫做不等式?
2.观察下列不等式,每个不等式中含有几个未知数?未知数的最高次数是多少?并与一元一次方程的定义类比,归纳它们的共同特征。
观察下列不等式:
(1)2x-2.5≥15; (2)x≤8.75;
(3)x<4; (4)5+3x>240.
这些不等式有哪些共同特点?
共同特点: 这些不等式的两边都是整式,只含一个未知数、并且未知数的(最高)指数是1 .
你能给它们起个名字吗?
只含有一个未知数,未知数的最高次数是1,这样的不等式叫做一元一次不等式.
引入概念
练一练
(6)x2-x<25
(1)2<3;
(2)3x+1=7;
(3)x-7>26;
(4)2x<3;
(5)3x-y≥1.
x
判断下列式子是一元一次不等式吗?如果不是请说明理由:
x


x
x
(1)只含有一个未知数;
完善概念
(3)不等式的两边都是整式;
(2)未知数的次数是1.
利用不等式的性质,解不等式 X-7>26
解:
根据不等式的性质1,
不等式两边加7,得
X-7+7>26+7
X>26+7
X>33
探究新知
其实就是把不等式左边的-7变号后移到右边,而不等号的方向不变,这就是“移项”。
观察解题的第二步我们发现什么
解一元一次方程的步骤:
1.去分母
2.去括号
3. 移项
4. 合并同类项
5. 系数化为1
探究新知
类比一元一次方程,你能解一元一 次不等式吗?
解:
去括号,得
2+2X<3
移项,得
2x<3-2
合并同类项,得
2x<1
系数化为1,得
x<0.5
解集在数轴上的表示如图
例题1.解不等式,并在数轴上表示解集:
2(1+x)<3.
0
0.5
3.解下列不等式,并将解集在数轴上表示出来.
(1)3x+2<2x—5; (2)19—3(x+7)≤0 .
小牛试刀
解:
去分母,得
3(2+x) ≥ 2(2x-1)
去括号,得
移项,得
合并同类项,得
系数化为1,得
这个解集在数轴上表示为

例题2.解不等式
,并把解集在数轴
上表示出来.
6+3x ≥ 4x-2
3x-4x ≥ -2-6
-x ≥ -8
X≤8
0
8
去分母
去括号
移项
合并同类项
系数化为1
解: ,得: 3(x-3)≤2(2x-1)-6
,得 3x-9≤4x-2-6
,得 3x-4x≤9-2-6
,得 -x≤1
,得 x≥-1
这个解集在数轴上表示为:
4.解不等式
,完成以下填空.
归纳总结,导出新知
解一元一次不等式的一般步骤:
1.去分母
2.去括号
3. 移项
4. 合并同类项
5. 系数化为 1
 解一元一次不等式和解一元一次方程
有哪些相同和不同之处?
相同之处:
基本步骤相同:去分母,去括号,移项,合并同类项,系数化为1.
基本思想相同:都是运用化归思想,将一元一次方程或一元一次不等式变形为最简形式.
不同之处:
(1)解法依据不同:解一元一次不等式的依据是不等式的性质,解一元一次方程的依据是等式的性质.
(2)最简形式不同,一元一次不等式的最简形式是 x>a或x1.不等式x+1>2x-4 的解集是( )
A.X>5 B.X<5 C.X<1 D.X>1
知识巩固
2.把不等式-2x<4的解集表示在数轴上,正确的是( )
B
A
3.(中考题·有改动)试一试:根据数轴上表示的解集,请写出满足条件的一元一次不等式。
4.(重庆·中考)解不等式 并把解集在
数轴上表示出来.
【解析】把原不等式去分母得:6x-9<x+1
移项,合并同类项得:5x<10
把x的系数化为1得:x<2
2
3
1
4
5
6
0
-1
-2
5.解不等式 ,并把它的解集在数轴上
表示出来.
【解析】去分母,得 4(2x-1)-2(10x+1)≥15x-60.
去括号,得 8x-4-20x-2≥15x-60
移项、合并同类项,得-27x≥-54
系数化为1,得x≤2.
在数轴上表示解集如图所示:
通过本课时的学习,需要我们掌握:
1.一元一次不等式的概念;
2.一元一次不等式的解法与一元一次方程的解法类似,
(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1(有时不等号的方向会改变哦!)