高中新课程数学(新课标人教A版)选修2-3《132“杨辉三角”与二项式系数的性质》(课件+教案+导学案+评估训练)(打包10份)

文档属性

名称 高中新课程数学(新课标人教A版)选修2-3《132“杨辉三角”与二项式系数的性质》(课件+教案+导学案+评估训练)(打包10份)
格式 zip
文件大小 2.3MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2013-03-27 21:53:28

文档简介

课件16张PPT。1.3.2“杨辉三角”与二项式系数的性质一、新课引入二项展开式中的二项式系数指的是那些?共有多少个? 下面我们来研究二项式系数有些什么性质?我们先通过杨辉三角观察n为特殊值时,二项式系数有什么特点?1.“杨辉三角”的来历及规律 杨辉三角展开式中的二项式系数,如下表所示: 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 …… …… ……二项式系数的性质 展开式的二项式系数依次是: 从函数角度看, 可看成是以r为自变量的函数 ,其定义域是: 当 时,其图象是右图中的7个孤立点.二项式系数的性质2.二项式系数的性质 (1)对称性 与首末两端“等距离”的两个二项式系数相等. 这一性质可直接由公式
得到.图象的对称轴:二项式系数的性质(2)增减性与最大值 由于:所以 相对于 的增减情况由 决定. 二项式系数的性质(2)增减性与最大值 由: 二项式系数是逐渐增大的,由对称性可知它的后半部分是逐渐减小的,且中间项取得最大值。 可知,当 时,二项式系数的性质(2)增减性与最大值 (3)各二项式系数的和 二项式系数的性质在二项式定理中,令 ,则: 这就是说, 的展开式的各二项式系数的和等于:同时由于 ,上式还可以写成:这是组合总数公式. 一般地, 展开式的二项式系数
有如下性质: (1) (2) (3)当 时, (4) 当 时,课堂练习:
1)已知 ,那么 = ;
2) 的展开式中,二项式系数的最大值是 ;
3)若 的展开式中的第十项和第十一项的二项式系数最大,则n= ; 例1 证明在 的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和. 例3: 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项。变式引申:
1、 的展开式中,系数绝对值最大的项是( )
A.第4项 B.第4、5项 C.第5项 D.第3、4项
2、若 展开式中的第6项的系数最大,则不含x的项等于( )
A.210 B.120 C.461 D.416例4、若 展开式中前三项系数成等差

数列,求(1)展开式中含x的一次幂的项;
(2)展开式中所有x 的有理项;
(3)展开式中系数最大的项。1、已知 的展开式中x3的系数
为 ,则常数a的值是_______   2、在(1-x3)(1+x)10的展开式中x5的系数是(   )
A.-297 B.-252 C. 297 D. 2073、(x+y+z)9中含x4y2z3的项的系数是__________课堂练习4.已知(1+ )n展开式中含x-2的项的系数为12,求n.
5.已知(10+xlgx)5的展开式中第4项为106,求x的值. 二项展开式中的二项式系数都是一些特殊的组合数,它有三条性质,要理解和掌握好,同时要注意“系数”与“二项式系数”的区别,不能混淆,只有二项式系数最大的才是中间项,而系数最大的不一定是中间项,尤其要理解和掌握“取特值”法,它是解决有关二项展开式系数的问题的重要手段。小结课件8张PPT。1.3.2“杨辉三角”与二项式系数的性质(二) 一般地, 展开式的二项式系数
有如下性质: (1) (2) (4)(对称性)例1、若 展开式中前三项系数成等差

数列,求(1)展开式中含x的一次幂的项;
(2)展开式中所有x 的有理项;
(3)展开式中系数最大的项。练习: 的展开式中,无理项的个数是( )
A .83 B.84 C.85 D.86B例2、在 的展开式中,
1)系数的绝对值最大的项是第几项?
2)求二项式系数最大的项;
3)求系数最大的项;
4)求系数最小的项。练习: 余数是1,所以是星期六例4、今天是星期五,那么 天后的这一天是星期几?例5、求 精确到0.001的近似值。变式引申:填空
1) 除以7的余数是 ;
2) 除以8的余数是 。课堂练习:1. 等于 ( )
A. B. C. D. 2.在 的展开式中x的系数为( )
A.160 B.240 C.360 D.8003.求的展开式中 项的系数.4.已知
那么 的展开式中含 项的系数是 . 5.求值:§1.3.2 “杨辉三角”与二项式系数的性质
课前预习学案
一、预习目标
借助“杨辉三角”数表,掌握二项式系数的对称性,增减性与最大值。
二、预习内容
1、二项式定理:________________________________________________;
二项式系数:______________________________________________;
2、( 1+x) n?=________________________________________________;
练一练:把( a+b) n?(n=1,2,3,4,5,6)展开式的二项式系数填入课本P37的表格。
想一想:杨辉三角揭示了二项展开式的二项式系数的变化情况,那么杨辉三角有何特点?或者说二项式系数有何性质呢?
画一画:当n=6时,作出函数f(r)的图象,并结合图象分析二项式系数的性质。
课内探究学案
一、学习目标
①了解“杨辉三角”的特征,让学生偿试并发现二项式系数规律;   ②通过探究,掌握二项式系数的性质,并能用它计算和证明一些简单的问题;   二、学习重难点:
学习重点:二项式系数的性质及其应用;
学习难点:杨辉三角的基本性质的探索和发现。
三、学习过程
(一)、杨辉三角的来历及规律
问题1:根据( a+b) n?(n=1,2,3,4,5,6)展开式的二项式系数表,你能发现什么规律?
问题2:杨辉三角揭示了二项展开式的二项式系数的变化情况,那么杨辉三角有何特点?或者说二项式系数有何性质呢?
对于( a+b) n展开式的二项式系数,,,…,,从函数角度看,可看成是以r为自变量的函数f(r),其定义域是{0,1,2,…,n},令f(r)= ,定义域为{0,1,2,…,n}
问题3:当n=6时,作出函数f(r)的图象,并结合图象分析二项式系数的性质。
二项式系数的重要性质
1、对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等。即=
分析:
2、增减性与最大值:二项式系数先增大后减小,中间取最大。
提示:(1)讨论与的大小关系。 (2)讨论与1的大小关系。
3、各项二项式系数的和:( a+b) n的展开式中的各个二项式系数的和为2n
分析:赋值法的应用。
四、典型例题(性质4)
试证:在(a+b)n的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和。
分析:奇数项的二项式系数的和为+++…,
偶数项的二项式系数的和为+++…,
由于(a+b)n=an+an-1b+…+an-kbk+…+bn中的a,b可以取任意实数,因此我们可以通过对a,b适当赋值来得到上述两个系数和。
五、当堂检测
1、已知=a,=b,那么=__________;
2、(a+b)n的各二项式系数的最大值是____________;
3、++…+=________;
4、__________;
5、证明:+++…+ =2n-1 (n是偶数) ;
课后练习与提高
1、在(a+b)20的展开式中,与第五项二项式系数相同的项是( )
(A)第15项 (B) 第16项 (C) 第17项 (D) 第18项
2、(1—x)13的展开式中系数最小的项是( )
(A)第6项 (B) 第7项 (C) 第8项 (D) 第9项
3若与同时取得最大值,则m=_____________
4、已知(1—2x)7=a0+a1x+a2x2+…+a7x7
则a1+a2+…+a7=__________ a1+a3+ a5+a7=__________ a0+a2+ a4+a6=__________
5、已知()n的展开式中前三项的二项式系数的和等于37,求展开式中二项式系数最大的项的系数.
1.3.2“杨辉三角”与二项式系数的性质
教学目标:
知识与技能:掌握二项式系数的四个性质。
过程与方法:培养观察发现,抽象概括及分析解决问题的能力。
情感、态度与价值观:要启发学生认真分析书本图1-5-1提供的信息,从特殊到一般,归纳猜想,合情推理得到二项式系数的性质再给出严格的证明。
教学重点:如何灵活运用展开式、通项公式、二项式系数的性质解题
教学难点:如何灵活运用展开式、通项公式、二项式系数的性质解题
授课类型:新授课
课时安排:2课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.二项式定理及其特例:
(1),
(2).
2.二项展开式的通项公式:
3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性
二、讲解新课:
1二项式系数表(杨辉三角)
展开式的二项式系数,当依次取…时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和
2.二项式系数的性质:
展开式的二项式系数是,,,…,.可以看成以为自变量的函数
定义域是,例当时,其图象是个孤立的点(如图)
(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵).
直线是图象的对称轴.
(2)增减性与最大值.∵,
∴相对于的增减情况由决定,,
当时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;
当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值.
(3)各二项式系数和:
∵,
令,则
三、讲解范例:
例1.在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和
证明:在展开式中,令,则,
即,
∴,
即在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.
说明:由性质(3)及例1知.
例2.已知,求:
(1); (2); (3).
解:(1)当时,,展开式右边为
∴,
当时,,∴,
(2)令, ①
令, ②
①② 得:,∴ .
(3)由展开式知:均为负,均为正,
∴由(2)中①+② 得:,
∴ ,


例3.求(1+x)+(1+x)2+…+(1+x)10展开式中x3的系数
解:
=,
∴原式中实为这分子中的,则所求系数为
例4.在(x2+3x+2)5的展开式中,求x的系数
解:∵
∴在(x+1)5展开式中,常数项为1,含x的项为,
在(2+x)5展开式中,常数项为25=32,含x的项为
∴展开式中含x的项为 ,
∴此展开式中x的系数为240
例5.已知的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项
解:依题意
∴3n(n-1)(n-2)(n-3)/4!=4n(n-1)/2!n=10
设第r+1项为常数项,又
令,
此所求常数项为180
例6. 设,
当时,求的值
解:令得:

∴,
点评:对于,令即可得各项系数的和的值;令即,可得奇数项系数和与偶数项和的关系
例7.求证:.
证(法一)倒序相加:设 ①
又∵   ②
∵,∴,
由①+②得:,
∴,即.
(法二):左边各组合数的通项为

∴ .
例8.在的展开式中,求:
①二项式系数的和; 
②各项系数的和; 
③奇数项的二项式系数和与偶数项的二项式系数和; 
④奇数项系数和与偶数项系数和; 
⑤的奇次项系数和与的偶次项系数和.
分析:因为二项式系数特指组合数,故在①,③中只需求组合数的和,而与二项式中的系数无关.
解:设(*),
各项系数和即为,奇数项系数和为,偶数项系数和为,的奇次项系数和为,的偶次项系数和.
由于(*)是恒等式,故可用“赋值法”求出相关的系数和.
①二项式系数和为.
②令,各项系数和为.
③奇数项的二项式系数和为,
偶数项的二项式系数和为.
④设,
令,得到…(1),
令,(或,)得…(2)
(1)+(2)得,
∴奇数项的系数和为;
(1)-(2)得,
∴偶数项的系数和为.
⑤的奇次项系数和为;
的偶次项系数和为.
点评:要把“二项式系数的和”与“各项系数和”,“奇(偶)数项系数和与奇(偶)次项系数和”严格地区别开来,“赋值法”是求系数和的常规方法之一.
例9.已知的展开式的系数和比的展开式的系数和大992,求的展开式中:①二项式系数最大的项;②系数的绝对值最大的项.
解:由题意,解得.
①的展开式中第6项的二项式系数最大,
即.
②设第项的系数的绝对值最大,

∴,得,即
∴,∴,故系数的绝对值最大的是第4项
例10.已知:的展开式中,各项系数和比它的二项式系数和大.
(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项
解:令,则展开式中各项系数和为,
又展开式中二项式系数和为,
∴,.
(1)∵,展开式共项,二项式系数最大的项为第三、四两项,
∴,,
(2)设展开式中第项系数最大,则,
∴,∴,
即展开式中第项系数最大,.
例11.已知,
求证:当为偶数时,能被整除
分析:由二项式定理的逆用化简,再把变形,化为含有因数的多项式
∵,
∴,∵为偶数,∴设(),

() ,
当=时,显然能被整除,
当时,()式能被整除,
所以,当为偶数时,能被整除
三、课堂练习:
1.展开式中的系数为 ,各项系数之和为 .
2.多项式()的展开式中,的系数为
3.若二项式()的展开式中含有常数项,则的最小值为( )
A.4 B.5 C.6 D.8
4.某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应 ( )
A.低于5% B.在5%~6%之间
C.在6%~8%之间 D.在8%以上
5.在的展开式中,奇数项之和为,偶数项之和为,则等于( )
A.0 B. C. D.
6.求和:.
7.求证:当且时,.
8.求的展开式中系数最大的项
答案:1. 45, 0 2. 0 .提示:
3. B 4. C 5. D 6.
7. (略) 8.
四、小结 :二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个节破,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用
五、课后作业:P36 习题1.3A组5. 6. 7.8 B组1. 2
1.已知展开式中的各项系数的和等于的展开式的常数项,而 展开式的系数的最大的项等于,求的值
答案:
2.设
求:① ②.
答案:①; ②
3.求值:.
答案:
4.设,试求的展开式中:
(1)所有项的系数和;
(2)所有偶次项的系数和及所有奇次项的系数和
答案:(1);
(2)所有偶次项的系数和为;
所有奇次项的系数和为
六、板书设计(略)
七、教学反思:
二项展开式中的二项式系数都是一些特殊的组合数,它有三条性质,要理解和掌握好,同时要注意“系数”与“二项式系数”的区别,不能混淆,只有二项式系数最大的才是中间项,而系数最大的不一定是中间项,尤其要理解和掌握“取特值”法,它是解决有关二项展开式系数的问题的重要手段。
二项式定理概念的引入,我们已经学过(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,那么对一般情况;(a+b)n展开后应有什么规律,这里n∈N,这就是我们这节课“二项式定理”要研究的内容.
选择实验归纳的研究方式,对(a+b)n一般形式的研究与求数列{an}的通项公式有些类似,大家想想,求an时我们用了什么方法,学生:先写出前n项,再观察规律,猜测其表达式,最后用数学归纳法证明,老师:大家说得很正确,现在我们用同样的方式来研究(a+b)4的展开,因(a+b)4=(a+b)3(a+b),我们可以用(a+b)3展开的结论计算(a+b)4(由学生板演完成,体会计算规律)然后老师把计算过程总结为如下形式:
(a+b)4=(a+b)3(a+b)=(a3+3a2b+3ab2+b3)(a+b)=a4+3a3b2+ab3+3a2b2+3ab3+b4=a4+4a3b+6a2b2+4ab3+b4.
对计算的化算:对(a+b)n展开式中的项,字母指数的变化规律是十分明显的,大家能说出它们的规律吗?学生:a的指数从n逐次降到0,b的指数从0逐次升到n,老师:大家说的很对,这样一来展开式的项数就是从0到n的(n+1) 项了,但唯独系数规律还是“犹抱琵琶半遮面”使我们难以发现,但我们仍可用来表示,它这样一来(a+b)n的展开形式就可写成(a+b)n=现在的问题就是要找的表达形式.为此我们要采用抽象分析法来化简计算
2007年高考题
1.(2007年江苏卷)若对于任意实数,有,则的值为(B)
A. B. C. D.
2.(2007年湖北卷)如果 的展开式中含有非零常数项,则正整数n的最小值为
A.3 B.5 C.6 D.10
【答案】:B.
【分析】:,
,()。.
【高考考点】:本题主要考查二项式定理的有关知识和整除的知识,以及分析问题和解决问题的能力.
【易错点】:注意二项式定理的通项公式中项数与r的关系。
【高学科网备考提示】:二项式定理是高考的常考内容,有时单独命题,有时与其它分支的知识相综合。
3.(2007年江西卷)已知展开式中,各项系数的和与其各项二项式系数的和之比为,则等于( C )
A. B. C. D.
4.(2007年全国卷I)的展开式中,常数项为,则( D )
A. B. C. D.
5.(2007年全国卷Ⅱ)的展开式中常数项为 .(用数字作答)
6.(2007年天津卷)若的二项展开式中的系数为,则 2 (用数字作答).
7.(2007年重庆卷)若展开式的二项式系数之和为64,则展开式的常数项为( B )
A10 B.20 C.30 D.120
8.(2007年安徽卷)若(2x3+)a的展开式中含有常数项,则最小的正整数n等于 7 . 9.(2007年湖南卷)将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第次全行的数都为1的是第 行;第61行中1的个数是 32 .
第1行      1 1
第2行 1 0 1
第3行 1 1 1 1
第4行 1 0 0 0 1
第5行 1 1 0 0 1 1
…… ………………………………………
图1
1.3.2“杨辉三角”与二项式系数的性质
第一课时
一、复习引入:
1.二项式定理及其特例:
(1),
(2).
2.二项展开式的通项公式:
3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性
二、讲解新课:
1二项式系数表(杨辉三角)
展开式的二项式系数,当依次取…时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和
2.二项式系数的性质:
展开式的二项式系数是,,,…,.可以看成以为自变量的函数
定义域是,例当时,其图象是个孤立的点(如图)
(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵).
直线是图象的对称轴.
(2)增减性与最大值.∵,
∴相对于的增减情况由决定,,
当时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;
当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值.
(3)各二项式系数和:
∵,
令,则
三、讲解范例:
例1.在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和
证明:在展开式中,令,则,
即,
∴,
即在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.
说明:由性质(3)及例1知.
例2.已知,求:
(1); (2); (3).
解:(1)当时,,展开式右边为
∴,
当时,,∴,
(2)令, ①
令, ②
①② 得:,∴ .
(3)由展开式知:均为负,均为正,
∴由(2)中①+② 得:,
∴ ,


例3.求(1+x)+(1+x)2+…+(1+x)10展开式中x3的系数
解:
=,
∴原式中实为这分子中的,则所求系数为
第二课时
例4.在(x2+3x+2)5的展开式中,求x的系数
解:∵
∴在(x+1)5展开式中,常数项为1,含x的项为,
在(2+x)5展开式中,常数项为25=32,含x的项为
∴展开式中含x的项为 ,
∴此展开式中x的系数为240
例5.已知的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项
解:依题意
∴3n(n-1)(n-2)(n-3)/4!=4n(n-1)/2!n=10
设第r+1项为常数项,又
令,
此所求常数项为180
例6. 设,
当时,求的值
解:令得:

∴,
点评:对于,令即可得各项系数的和的值;令即,可得奇数项系数和与偶数项和的关系
例7.求证:.
证(法一)倒序相加:设 ①
又∵   ②
∵,∴,
由①+②得:,
∴,即.
(法二):左边各组合数的通项为

∴ .
例8.在的展开式中,求:
①二项式系数的和; 
②各项系数的和; 
③奇数项的二项式系数和与偶数项的二项式系数和; 
④奇数项系数和与偶数项系数和; 
⑤的奇次项系数和与的偶次项系数和.
分析:因为二项式系数特指组合数,故在①,③中只需求组合数的和,而与二项式中的系数无关.
解:设(*),
各项系数和即为,奇数项系数和为,偶数项系数和为,的奇次项系数和为,的偶次项系数和.
由于(*)是恒等式,故可用“赋值法”求出相关的系数和.
①二项式系数和为.
②令,各项系数和为.
③奇数项的二项式系数和为,
偶数项的二项式系数和为.
④设,
令,得到…(1),
令,(或,)得…(2)
(1)+(2)得,
∴奇数项的系数和为;
(1)-(2)得,
∴偶数项的系数和为.
⑤的奇次项系数和为;
的偶次项系数和为.
点评:要把“二项式系数的和”与“各项系数和”,“奇(偶)数项系数和与奇(偶)次项系数和”严格地区别开来,“赋值法”是求系数和的常规方法之一.
第三课时
例9.已知的展开式的系数和比的展开式的系数和大992,求的展开式中:①二项式系数最大的项;②系数的绝对值最大的项.
解:由题意,解得.
①的展开式中第6项的二项式系数最大,
即.
②设第项的系数的绝对值最大,

∴,得,即
∴,∴,故系数的绝对值最大的是第4项
例10.已知:的展开式中,各项系数和比它的二项式系数和大.
(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项
解:令,则展开式中各项系数和为,
又展开式中二项式系数和为,
∴,.
(1)∵,展开式共项,二项式系数最大的项为第三、四两项,
∴,,
(2)设展开式中第项系数最大,则,
∴,∴,
即展开式中第项系数最大,.
例11.已知,
求证:当为偶数时,能被整除
分析:由二项式定理的逆用化简,再把变形,化为含有因数的多项式
∵,
∴,∵为偶数,∴设(),

() ,
当=时,显然能被整除,
当时,()式能被整除,
所以,当为偶数时,能被整除
三、课堂练习:
1.展开式中的系数为 ,各项系数之和为 .
2.多项式()的展开式中,的系数为
3.若二项式()的展开式中含有常数项,则的最小值为( )
A.4 B.5 C.6 D.8
4.某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应 ( )
A.低于5% B.在5%~6%之间
C.在6%~8%之间 D.在8%以上
5.在的展开式中,奇数项之和为,偶数项之和为,则等于( )
A.0 B. C. D.
6.求和:.
7.求证:当且时,.
8.求的展开式中系数最大的项
答案:1. 45, 0 2. 0 .提示:
3. B 4. C 5. D 6.
7. (略) 8.
四、小结 :二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个节破,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用
1.已知展开式中的各项系数的和等于的展开式的常数项,而 展开式的系数的最大的项等于,求的值答案:
2.设
求:① ②.答案:①; ②
3.求值:.答案:
4.设,试求的展开式中:
(1)所有项的系数和;(2)所有偶次项的系数和及所有奇次项的系数和
答案:(1);
(2)所有偶次项的系数和为;所有奇次项的系数和为
七、教学反思:
二项展开式中的二项式系数都是一些特殊的组合数,它有三条性质,要理解和掌握好,同时要注意“系数”与“二项式系数”的区别,不能混淆,只有二项式系数最大的才是中间项,而系数最大的不一定是中间项,尤其要理解和掌握“取特值”法,它是解决有关二项展开式系数的问题的重要手段。
二项式定理概念的引入,我们已经学过(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,那么对一般情况;(a+b)n展开后应有什么规律,这里n∈N,这就是我们这节课“二项式定理”要研究的内容.
选择实验归纳的研究方式,对(a+b)n一般形式的研究与求数列{an}的通项公式有些类似,大家想想,求an时我们用了什么方法,学生:先写出前n项,再观察规律,猜测其表达式,最后用数学归纳法证明,老师:大家说得很正确,现在我们用同样的方式来研究(a+b)4的展开,因(a+b)4=(a+b)3(a+b),我们可以用(a+b)3展开的结论计算(a+b)4(由学生板演完成,体会计算规律)然后老师把计算过程总结为如下形式:
(a+b)4=(a+b)3(a+b)=(a3+3a2b+3ab2+b3)(a+b)=a4+3a3b2+ab3+3a2b2+3ab3+b4=a4+4a3b+6a2b2+4ab3+b4.
对计算的化算:对(a+b)n展开式中的项,字母指数的变化规律是十分明显的,大家能说出它们的规律吗?学生:a的指数从n逐次降到0,b的指数从0逐次升到n,老师:大家说的很对,这样一来展开式的项数就是从0到n的(n+1) 项了,但唯独系数规律还是“犹抱琵琶半遮面”使我们难以发现,但我们仍可用来表示,它这样一来(a+b)n的展开形式就可写成(a+b)n=现在的问题就是要找的表达形式.为此我们要采用抽象分析法来化简计算
1.(2007年江苏卷)若对于任意实数,有,则的值为(B)
A. B. C. D.
2.(2007年湖北卷)如果 的展开式中含有非零常数项,则正整数n的最小值为(B)
A.3 B.5 C.6 D.10
【分析】:,
,()。.
3.(2007年江西卷)已知展开式中,各项系数的和与其各项二项式系数的和之比为,则等于( C )
A. B. C. D.
4.(2007年全国卷I)的展开式中,常数项为,则( D )
A. B. C. D.
5.(2007年全国卷Ⅱ)的展开式中常数项为 .(用数字作答)
6.(2007年天津卷)若的二项展开式中的系数为,则 2 (用数字作答).
7.(2007年重庆卷)若展开式的二项式系数之和为64,则展开式的常数项为( B )
A10 B.20 C.30 D.120
8.(2007年安徽卷)若(2x3+)a的展开式中含有常数项,则最小的正整数n等于 7 . 9.(2007年湖南卷)将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第次全行的数都为1的是第 行;第61行中1的个数是 32 .
第1行      1 1
第2行 1 0 1
第3行 1 1 1 1
第4行 1 0 0 0 1
第5行 1 1 0 0 1 1
…… ………………………………………
1.3.2 “杨辉三角”与二项式系数的性质
双基达标 ?限时20分钟?
1.已知(a+b)n展开式中只有第5项的二项式系数最大,则n等于 (  ).
A.11 B.10 C.9 D.8
解析 ∵只有第5项的二项式系数最大,∴+1=5.∴n=8.
答案 D
2. 的展开式中第8项是常数,则展开式中系数最大的项是 (  ).
A.第8项 B.第9项
C.第8项或第9项 D.第11项或第12项
解析 展开式中的第8项为C()n-7为常数,即=0,
∴n=21.∴展开式中系数最大的项为第11项或第12项.
答案 D
3.设(3-x)n=a0+a1x+a2x2+…+anxn,若n=4,则a0-a1+a2+…+(-1)nan= (  ).
A.256 B.136 C.120 D.16
解析 在展开式中令x=-1得a0-a1+a2-a3+a4=44.故选A.
答案 A
4.在二项式(1-2x)6的展开式中,所有项的系数之和为________.
解析 令x=1,得(1-2x)6展开式中所有项的系数和为(1-2)6=1.
答案 1
5. 如图是一个类似杨辉三角的递推式,则第n行的首尾两个数均为________.
解析 由1,3,5,7,9,…,可知它们成等差数列,
所以an=2n-1.
答案 2n-1
6.设(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+anxn,当a0+a1+a2+…+an=254时,求n的值.
解 令x=1,得a0+a1+a2+…+an=2+22+23+…+2n==254,∴2n=128,即n=7.
综合提高(限时25分钟)
7.若(x+3y)n展开式的系数和等于(7a+b)10展开式中的二项式系数之和,则n的值为 (  ).
A.5 B.8 C.10 D.15
解析 (7a+b)10展开式的二项式系数之和为210,令x=1,y=1,则由题意知,
4n=210,解得n=5.
答案 A
8.(2012·济宁高二检测)如果的展开式中各项系数之和为128,则展开式中的系数是 (  ).
A.7 B.-7 C.21 D.-21
解析 令x=1,则(3-1)n=128=2n,∴n=7
即求展开式中通项Tr+1=C·(3x)7-r·(x-)r·(-1)r=C37-r·x7
-·(-1)r.令7-=-3,得r=6,即系数为C·3=21.
答案 C
9.在(a-b)10的二项展开式中,系数最小项是________.
解析 在(a-b)10的二项展开式中,奇数项的系数为正,偶数项的系数为负,
且偶数项系数的绝对值为对应的二项式系数,因为展开式中第6项的二项式
系数最大,所以系数最小的项为T6=Ca5(-b)5=-252a5b5.
答案 -252a5b5
10.若(1-2x)2 012=a0+a1x+a2x2+…+a2 012x2 012(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2 012)=________.(用数字作答)
解析 在(1-2x)2 012=a0+a1x+a2x2+…+a2 012x2 012中,令x=0,则a0=1,
令x=1,则a0+a1+a2+a3+…+a2 012=(-1)2 012=1,
故(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2 012)
=2 011a0+a0+a1+a2+a3…+a2 012=2 012.
答案 2 012
11.已知(1-2x+3x2)7=a0+a1x+a2x2+…+a13x13+a14x14,
求(1)a1+a2+…+a14;
(2)a1+a3+a5+…+a13.
解 (1)令x=1得a0+a1+a2+…+a14=27.
令x=0得a0=1,
∴a1+a2+…+a14=27-1.
(2)由(1)得a0+a1+a2+…+a14=27, ①
令x=-1得a0-a1+a2-…-a13+a14=67, ②
由①-②得:
2(a1+a3+a5+…+a13)=27-67,
∴a1+a3+a5+…+a13=.
12.(创新拓展)(2012·长沙高二检测)对于二项式(1-x)10.
(1)求展开式的中间项是第几项?写出这一项;
(2)求展开式中除常数项外,其余各项的系数和;
(3)写出展开式中系数最大的项.
解 (1)由题意可知:r=0,1,2,…,11,展开式共11项,
所以中间项为第6项:T6=C(-x)5=-252x5.
(2)设(1-x)10=a0+a1x+a2x2+…+a10x10,
令x=1,得a0+a1+a2+…+a10=0,
令x=0,得a0=1,
∴a1+a2+…+a10=-1.
(3)∵中间项T6的系数为负,
∴系数最大的项为T5和T7,T5=Cx4=210x4,T7=Cx6=210x6.