10.1.4概率的基本性质 同步检测(Word版含答案)

文档属性

名称 10.1.4概率的基本性质 同步检测(Word版含答案)
格式 docx
文件大小 85.4KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-05-09 13:24:39

图片预览

文档简介

10.1.4 概率的基本性质(同步检测)
一、选择题
1.甲、乙两名乒乓球运动员在一场比赛中甲获胜的概率是0.2,若不出现平局,那么乙获胜的概率为(  )
A.0.2    B.0.8
C.0.4 D.0.1
2.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是(  )
A.0.42 B.0.28 C.0.3 D.0.7
3.经统计,某储蓄所一个营业窗口等候的人数及相应的概率如表:
排队人数/人 0 1 2 3 4 5人及以上
概率 0.1 0.16 0.3 0.3 0.1 0.04
则至少3人排队等候的概率是(  )
A.0.44 B.0.56 C.0.86 D.0.14
4.若A,B是互斥事件,P(A)=0.2,P(A∪B)=0.5,则P(B)=(  )
A.0.3 B.0.7 C.0.1 D.1
5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为(  )
A. B. C. D.
6.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率是90%,则甲、乙两人下和棋的概率是(  )
A.60% B.30% C.10% D.50%
7.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则是下列哪个事件的概率(  )
A.颜色全相同 B.颜色不全同
C.颜色全不同 D.无红球
8.在两行四列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点).开始时,骰子如图①那样摆放,朝上的点数是2,最后翻动到如图②所示位置.现要求翻动次数最少,则最后骰子朝上的点数为1的概率为 (  )
A. B. C. D.
二、填空题
9.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为________
10.若P(A∪B)=0.7,P(A)=0.4,P(B)=0.6,则P(A∩B)=________
11.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ,Ⅲ构成,射手命中Ⅰ,Ⅱ,Ⅲ的概率分别为0.35,0.30,0.25,则不命中靶的概率是________.
三、解答题
12.某饮料公司对一名员工进行测试,以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯中选对2杯,则评为良好;否则评为合格.假设此人对A和B两种饮料没有鉴别能力.
(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.
13.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C); (2)抽取1张奖券中奖概率;
(3)抽取1张奖券不中特等奖或一等奖的概率.
14.(1)某班派两名学生参加乒乓球比赛,他们取得冠军的概率分别为和,则该班取得乒乓球比赛冠军的概率为+.上述说法正确吗?为什么?
(2)某战士在一次射击训练中,击中环数大于7的概率为0.6,击中环数为6或7或8的概率为0.3,则该战士击中环数大于5的概率为0.6+0.3=0.9.上述说法是否正确?请说明理由.
15.袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个.现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.
(1)求取球2次即终止的概率;(2)求甲取到白球的概率.
参考答案:
一、选择题
1.B  2.C  3.A  4.A  5.D  6.D  7.B  8.D 
二、填空题
9.答案: 10.答案:0.3 11.答案:0.10
三、解答题
12.解:将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A饮料,编号4,5表示B饮料,则从5杯饮料中选出3杯的所有样本点为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10个.
设事件D表示“此人被评为优秀”,E表示“此人被评为良好”,F表示“此人被评为良好及以上”.
(1)事件D中含有的样本点为(1,2,3),共1个,因此P(D)=.
(2)事件E中含有的样本点为(1,2,4),(1,2,5),(1,3,4),(1,3,5),(2,3,4),(2,3,5),共6个,因此P(E)=,
故P(F)=P(D)+P(E)=.
13.解:(1)∵每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,
∴P(A)=,P(B)==,P(C)==.
(2)设“抽取1张奖券中奖”为事件D,则P(D)=P(A)+P(B)+P(C)=++=.
(3)设“抽取1张奖券不中特等奖或一等奖”为事件E,则P(E)=1-P(A)-P(B)=1--=.
14.解:(1)正确.因为两人分别取得冠军是互斥的,而且两人至少有一人取得冠军,该班就取得乒乓球比赛冠军,所以该班取得乒乓球比赛冠军的概率为+.
(2)不正确.因为该战士击中环数大于7和击中环数为6或7或8不是互斥事件,所以不能用互斥事件的概率加法公式计算.
15.解:(1)设事件A为“取球2次即终止”.即甲第一次取到的是黑球而乙取到的是白球,借助树状图求出相应事件的样本点数:
因此,P(A)==.
(2)设事件B为“甲取到白球”,“第i次取到白球”为事件Ai,i=1,2,3,4,5,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球.借助树状图求出相应事件的样本点数:
所以P(B)=P(A1∪A3∪A5)=P(A1)+P(A3)+P(A5)=++=++=.