10.3.1 频率的稳定性 课件(共17张PPT)

文档属性

名称 10.3.1 频率的稳定性 课件(共17张PPT)
格式 pptx
文件大小 278.2KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-05-10 10:40:06

图片预览

文档简介

(共17张PPT)
10.3.1 频率的稳定性
学习目标
能力目标
素养目标
通过实验让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.
通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.
1.数学抽象:频率的稳定性的理解.
2.数学运算:概率的应用.
知识目标
帮助学生认识频率与概率的关系,即事件的概率越大,意味着事件发生的可能性越大,在重复实验中,相应的频率一般也越大;事件的概率越小,则事件发生的可能性越小,在重复实验中,相应的频率一般也越小。进一步让学生体会概率与统计的思想,发展学生的直观想象、逻辑推理、数学建模的核心素养。
探究新知
重复做同时抛掷两枚质地均匀的硬币的试验,设事件A=“一个正面朝上,一个反面朝上”,统计A出现的次数并计算频率,再与其概率进行比较,你发现了什么规律?
探究新知
阅读课本251-254页,思考并完成以下问题
1、随着实验次数的增多,事件的频率有什么特点?
2、频率与概率有什么区别与联系
系统归纳
1.频率的稳定性
一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).
系统归纳
频率 概率
区别 频率反映了一个随机事件发生的频繁程度,是随机的 概率是一个确定的值,它反映随机事件发生的可能性的大小
联系 频率是概率的估计值,随着试验次数的增加,频率会越来越接近概率
2. 概率与频率的区别与联系
例1、新生婴儿性别比是每100名女婴对应的男婴数.通过抽样调查得知,我国2014年、2015年出生的婴儿性别比分别为115.88和113.51.
(1)分别估计我国2014年和2015年男婴的出生率(新生儿中男婴的比率,精确到0.001);
(2)根据估计结果,你认为“生男孩和生女孩是等可能的”这个判断可靠吗?
通性通法
利用概率的稳定性解题的注意事项
(1)概率是随机事件发生可能性大小的度量,是随机事件A的本质属性,随机事件A发生的概率是大量重复试验中事件A发生的频率的近似值.
(2)正确理解概率的意义,要清楚概率与频率的区别与联系.对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件.
例2、一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B 发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.
在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次。而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?
【解析】 当游戏玩了10次时,甲、乙获胜的频率都为0.5;当游戏玩了1000次时,甲获胜的频率为0.3,乙获胜的频率为0.7.根据频率的稳定性,随着实验次数的增加,频率偏离频率很大的可能性会越来越小.相对10次游戏,1000次游戏时的频率接近概率的可能性更大,因此我们更愿意相信1000次时的频率离概率更近,而游戏玩到1000次时,甲、乙获胜的频率分别是0.3和0.7,存在很大差距,所以有理由认为游戏是不公平的,因此,应该支持甲对游戏公平性的判断.
通性通法
游戏公平性的标准及判断方法:
(1)游戏规则是否公平,要看对游戏的双方来说,获胜的可能性或概率是否相同.若相同,则规则公平,否则就是不公平的.
(2)具体判断时,可以按所给规则,求出双方的获胜概率,再进行比较.
根据某教育研究机构的统计资料,在校学生近视的概率为40%,某眼镜商要到一中学给学生配眼镜,若已知该校学生总人数为1200,则该眼镜商应准备眼镜的数目为( )
A.460 B.480
C.不少于480 D.不多于480