人教A版(2019)选择性必修第三册第七章随机变量及其分布同步练习(word版含答案)

文档属性

名称 人教A版(2019)选择性必修第三册第七章随机变量及其分布同步练习(word版含答案)
格式 docx
文件大小 268.9KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-05-10 19:03:22

图片预览

文档简介

人教A版(2019)选择性必修第三册 第七章 随机变量及其分布 同步练习
一、单选题
1.已知随机变量,,且,,则( )
A. B. C. D.
2.某工厂有甲、乙、丙3个车间生产同一种产品,产量依次占全厂的45%,35%,20%,且各车间的次品率分别为4%,2%,5%,现从一批产品中检查出1个次品,则该次品由车间生产的可能性最大
A.甲 B.乙 C.丙 D.无法确定
3.将3只小球放入3个盒子中, 盒子的容量不限, 且每个小球落入盒子的概率相等. 记为分配后所剩空盒的个数, 为分配后不空盒子的个数, 则( )
A. B.
C. D.
4.有名学生,其中有名男生.从中选出名代表,选出的代表中男生人数为,则其数学期望为
A. B. C. D.
5.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,已知某工厂生产口罩的质量指标,单位为g,该厂每天生产的质量在的口罩数量为818600件,则可以估计该厂每天生产的质量在15.15g以上的口罩数量为( )
参考数据:若,则,,.
A.158 700 B.22 750 C.2 700 D.1 350
6.电视机的使用寿命与显像管开关的次数有关,某品牌的电视机的显像管开关了次还能继续使用的概率是,开关了次后还能继续使用的概率是,则已经开关了次的电视机显像管还能继续使用到次的概率是( )
A. B. C. D.
7.已知道试题中有道代数题和道几何题,每次从中抽取一道题,抽出的题不再放回,在第次抽到代数题的条件下,第次抽到几何题的概率为( )
A. B. C. D.
8.已知随机变量,,那么的值为( )
A. B. C. D.
9.某中学高三(1)班有50名学生,在一次高三模拟考试中,经统计得:数学成绩,则估计该班数学得分大于120分的学生人数为( )(参考数据:)
A.16 B.10 C.8 D.2
10.已知离散型随机变量服从二项分布且则的最大值为( )
A. B. C. D.
11.1654年,法国贵族德 梅雷骑士偶遇数学家布莱兹 帕斯卡,在闲聊时梅雷谈了最近遇到的一件事:某天在一酒吧中,肖恩和尤瑟纳尔两人进行角力比赛,约定胜者可以喝杯酒,当肖恩赢20局且尤瑟纳尔赢得40局时他们发现桌子上还剩最后一杯酒.此时酒吧老板和伙计提议两人中先胜四局的可以喝最后那杯酒,如果四局、五局、六局、七局后可以决出胜负那么分别由肖恩、尤瑟纳尔、酒吧伙计和酒吧老板付费,梅雷由于接到命令需要觐见国王,没有等到比赛结束就匆匆离开了酒馆.请利用数学知识做出合理假设,猜测最后付酒资的最有可能是(  )
A.肖恩 B.尤瑟纳尔 C.酒吧伙计 D.酒吧老板
12.接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.根据实验数据,人在接种某种病毒疫苗后,有不会感染这种病毒,若有人接种了这种疫苗,则最多人被感染的概率为( )
A. B. C. D.
二、填空题
13.设随机变量,函数没有零点的概率是,则_____________附:若,则,.
14.如图,将一个各面都涂了油漆的正方体切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为,则的均值______.
15.设随机变量服从正态分布,若,则实数______.
16.甲乙两个箱子中各装有5个大小、质地均相同的小球,其中甲箱中有3个红球、2个白球,乙箱中有2个红球、3个白球;抛一枚质地均匀的硬币,若硬币正面向上,从甲箱中随机摸出一出一个球;若硬币反面向上,从乙箱中随机摸出一个球.则摸到红球的概率为________.
三、解答题
17.某学校工会积极组织学校教职工参与“日行万步”健身活动,规定每日行走不足8千步的人为“不健康生活方式者”,不少于14千步的人为“超健康生活方式者”,其他为“一般健康生活方式者”.某日,学校工会随机抽取了该校300名教职工的“日行万步”健身活动数据,统计出他们的日行步数(单位:千步,且均在内),按步数分组,得到频率分布直方图如图所示.
(1)求被抽取的300名教职工日行步数的平均数(每组数据以区间的中点值为代表,结果四舍五入保留整数).
(2)由直方图可以认为该校教职工的日行步数服从正态分布,其中,为(1)中求得的平均数标准差的近似值为2,求该校被抽取的300名教职工中日行步数的人数(结果四舍五入保留整数).
(3)用样本估计总体,将频率视为概率.若工会从该校教职工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:“不健康生活方式者”给予精神鼓励,奖励金额每人0元;“一般健康生活方式者”奖励金额每人100元;“超健康生活方式者”奖励金额每人200元,求工会慰问奖励金额X的分布列和数学期望.
附:若随机变量服从正态分布,则,,.
18.为迎接2020年国庆节的到来,某电视台举办爱国知识问答竞赛,每个人随机抽取五个问题依次回答,回答每个问题相互独立.若答对一题可以上升两个等级,回答错误可以上升一个等级,最后看哪位选手的等级高即可获胜.甲答对每个问题的概率为,答错的概率为.
(1)若甲回答完5个问题后,甲上的台阶等级数为,求的分布列及数学期望;
(2)若甲在回答过程中出现在第个等级的概率为,证明:为等比数列.
19.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图.
(1)写出这组数据的众数和中位数.
(2)若视力测试结果不低于5.0,则称为“好视力”.
①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;
②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数较多)中任选3名,记表示抽到“好视力”学生的人数,求的分布列.
20.某省高考曾经使用过一段标准分制度,标准分是把学生考试的基础分参与全省排出相对名称,通过公式换算成标准分.高考后公布考生的标准分,而不公布基础分.考生根据自己的标准分多少就可以大致估出自己在全省考生的名次.其标准分X是服从正态分布N(500,1002)的随机变量.假设某学生的数学成绩不低于600的概率为p0.
(1)求p0的值;
(2)某校高三的高考英语和数学两科都超过600分的有5人,仅单科超过600分的共有8人,在这些同学中随机抽取3人,设三人中英语和数学双科都超过600分的有ξ人,求ξ的分布列和数学期望.
(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
21.有一种精密零件,其尺寸X(单位:mm)服从正态分布N(20,4).若这批零件共有5 000个,试求:
(1)这批零件中尺寸在18~22 mm间的零件所占的百分比;
(2)若规定尺寸在24~26 mm间的零件不合格,则这批零件中不合格的零件大约有多少个?
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.B
2.A
3.C
4.B
5.D
6.D
7.C
8.B
9.C
10.C
11.B
12.A
13.
14.
15.6
16.##
17.(1);(2);(3)分布列答案见解析,数学期望:.
18.(1)分布列答案见解析,数学期望:;(2)证明见解析.
19.(1)众数为4.6和4.7,中位数为
(2)①;②分布列见解析
20.(1)0.1587;(2)分布列见解析,.
21.(1)68.27%;(2)107(个).
答案第1页,共2页
答案第1页,共2页