(共15张PPT)
第十章 概率
10.3.1频率的稳定性
星
事件的概率越大,意味着事件发生的可能性越大,,在重复试验中,相应的频数一般也越大;事件的概率越小,则事件发生的可能性越小,在重复试验中,相应的频数一般也越小.
在初中,我们利用频率与概率的这种关系,通过大量重复试验,用频率去估计概率.
那么,在重复试验中,频率的大小是否就决定了概率的大小呢?频率与概率之间到底是一种怎样的关系呢?
探究:重复做同时抛掷一枚质地均匀的硬币的试验,设事件A=“一个正面朝上,一个反面朝上”,统计A出现的次数并计算频率,再与其概率进行比较.你发现了什么规律
利用计算机模拟掷两枚硬币的试验:在重复试验次数为20,100,500时各做5组试验,得到事件A=“一个正面朝上,一个反面朝上”发生的频数 n和频率fn(A).
序号 n=20 n=100 n=500
频数 频率 频数 频率 频数 频率
1 12 0.6 56 0.56 261 0.522
2 9 0.45 50 0.50 241 0.482
3 13 0.65 48 0.48 250 0.5
4 7 0.35 55 0.55 258 0.516
5 12 0.6 52 0.52 253 0.506
用折线图表示频率的波动情况(如下图).
我们发现:
1.试验次数n相同,频率fn(A)可能不同,这说明随机事件发生的频率具有随机性.
2.从整体来看,频率在概率0.5附近波动.当试验次数较少时,波动幅度较大;当试验次数较大时,波动幅度较小,但试验次数多的波动幅度并不全都比次数少的小,只是波动幅度小的可能性更大.
大量试验表明,在任何确定次数的随机试验中,一个随机事件A发生的频率具有随机性.一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).
我们称频率的这个性质为频率的稳定性.
因此,我们可以使用频率fn(A)估计概率P(A).
他给出了著名的大数定律,大数定律阐述了随着试验次数的增加,频率稳定在概率附近.
例1 新生婴儿性别比是每100名女婴对应的男婴数.通过抽样调查得知,我国2014年,2015年出生的婴儿性别比分别为115.88和113.51.
(1)分别估计我国2014年和2015年男婴的出生率(新生儿中男婴的比率,精确到0.001);
(2) 根据估计结果,你认为”生男孩和生女孩是等可能的”这个判断可靠吗?
分析:根据“性别比”的定义和抽样调查结果,可以计算男婴出生的频率;由频率的稳定性,可以估计男婴的出生率.
(1)2014年男婴出生的频率为
≈0.537
115.88
100+115.88
2015年男婴出生的频率为
≈0.532
113.51
100+113.51
由此估计,我国2014年男婴出生率约为0.537, 2015年男婴的出生率约为0.532.
(2) 由于调查新生儿人数的样本非常大,根据频率的稳定性,上述对男婴
出生率的估计具有较高的可信度.
因此,我们有理由怀疑“生男孩和生女孩是等可能的”的结论.
例2 一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.
在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?
解:当游戏玩了10次时,甲乙获胜的频率都为0.5;当游戏玩了1000次时,甲获胜的频率为0.3,乙获胜的频率为0.7.据根频率的稳定性,随着试验次数的增加,频率偏离概率很大的可能性会越来越小.相对10次游戏,1000次游戏时的频率接近概率的可能性更大,因此我们更愿意相信1000次时的频率离概率更近.而游戏玩到1000次时,甲乙获胜的频率分别是0.3和0.7,存在很大差距,所以有理由认为游戏是不公平的.因此,应该支持甲对游戏公平性的判断.
思考:气象工作者有时用概率预报天气,如某气象台预报“明天的降水概率是90%.如果您明天要出门,最好携带雨具”.如果第二天没有下雨,我们或许会抱怨气象台预报得不准确.那么如何理解“降水概率是90%" 又该如何评价预报的结果是否准确呢
降水的概率是气象专家根据气象条件和经验,经分析推断得到的.对“降水的概率为90%”比较合理的解释是:大量观察发现,在类似的气象条件下,大约有90%的天数要下雨.
只有根据气象预报的长期记录,才能评价预报的准确性.如果在类似气象条件下预报要下雨的那些天(天数较多)里,大约有90%确实下雨了,那么应该认为预报是准确的;如果真实下雨的天数所占的比例与90%差别较大,那么就可以认为预报不太准确.
(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.
(2)频率本身是随机的,在试验前不能确定.
(3)概率是一个确定的常数,是客观存在的,在试验前已经确定,与试验次数无关.
归纳
1.概率与频率的关系.
2.用频率估计概率.
3.用随机模拟估计概率.
4.频率与概率的关系易混淆.
课堂小结
1.下列说法一定正确的是( )
A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况
B.一个骰子掷一次得到2的概率是 ,则掷6次一定会出现一次2
C.若买彩票中奖的概率为万分之一,则买一万元的彩票一定会中奖一元
D.随机事件发生的概率与试验次数无关
√
当堂达标
2.天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的取整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:
907 966 191 925 271
932 812 458 569 683
631 257 393 027 556
488 730 113 137 989
则这三天中恰有两天下雨的概率约为
√
3.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A出现的频率为________.
0.52