(共23张PPT)
20.1.2 中位数和众数
第二十章 数据的分析
第1课时 中位数和众数
学习目标
【学习目标】
1.认识中位数,会求一组数的中位数,理解它的作用并会运用它对实际问题分析决策.
2.认识众数,并会求一组数据的众数,理解众数的意义及作用,并会用它分析处理简单的实际问题.
【学习重点】
认识中位数、众数的意义,并会找一组数据的中位数和众数.
【学习难点】
利用中位数、众数分析数据信息做出决策.
数学期中考试,小明同学得了78分.全班共30人,其他同学的成绩为1个100分, 4个90分, 22个80分,以及一个2分和一个10分.小明回家告诉妈妈说,他这次成绩处于班级“中上水平”.
小明说谎了吗
生成问题
经理
应聘者小王
第二天,小王上班了.
职员C
我的工资是4000元,在公司算中等收入
我们好几个人工资都是3000元
职员D
新知探究
经理
应聘者小王
小王在公司工作了一周后
你欺骗了我,我已问过其他职员,没有一个职员的工资超过6000元.
平均工资确实是每月6000元,你看看公司的工资报表.
新知探究
中位数
月收
入/元
45 000
18 000
10 000
5 500
5 000
3 400
3 000
1 000
人数
1
1
1
3
6
1
11
1
问题1 下表是某公司员工月收入的资料.
(1)计算这个公司员工月收入的平均数;
平均数远远大于绝大多数人(22人)的实际月工资,
绝大多数人“被平均”.不合适.
(2)如果用(1) 算得的平均数反映公司全体员工月收入水平,你认为合适吗?
6276
“平均数”和“中等水平”谁更合理地反映了该公司绝大部分员工的月工资水平?这个问题中,中等水平的含义是什么?
问题2 该公司员工的中等收入水平大概是多少元?你是怎样确定的?
一半人月工资高于该数值,另一半人月工资低于该
数值;中等水平的含义是中位数.
月收
入/元
45 000
18 000
10 000
5 500
5 000
3 400
3 000
1 000
人数
1
1
1
3
6
1
11
1
新知探究
将一组数据按照由小到大(或由大到小)的顺序排列:
如果数据的个数是奇数,则称处于中间位置的数为
这组数据的中位数;
如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.
如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数据的整体水平.
思考:中位数有何意义?
确定中位数方法:
先排序、看奇偶,再计算.
知识要点
例1 在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:
136 140 129 180 124 154
146 145 158 175 165 148
(1)样本数据(12名选手的成绩)的中位数是多少?
解:(1)先将样本数据按照由小到大的顺序排列:__________________________________
__________________________________
这组数据的中位数为_________________________
的平均数,即______________.
答:样本数据的中位数是_______.
124 129 136 140 145 146
148 154 158 165 175 180
处于中间的两个数146, 148
147
典例精析
(2)一名选手的成绩是142min,他的成绩如何?
由(1)知样本数据的中位数为_______,它的意义是:这次马拉松比赛中,大约有______
选手的成绩快于147min,有______选手的成绩慢于147min. 这名选手的成绩是142min,快于中位数________,因此可以推测他的成绩比__________选手的成绩好.
147
有一半
一半
147min
一半以上
典例精析
例2 已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数.
解:∵10,10,x,8的中位数与平均数相等
∴ (10+x)÷2= (10+10+x+8)÷4
∴x=8
(10+x)÷2=9
∴这组数据的中位数是9.
变式:一组数据18,22,15,13,x,7,它的中位数是16,
则x的值是_______.
17
典例精析
2.如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数据的整体水平.
1.中位数是一个位置代表值(中间数),它是唯一的.
3.如果已知一组数据的中位数,那么可以知道,小于或大于这个中位数的数据各占一半,反映一组数据的中间水平.
中位数的特征及意义:
总结归纳
众数
思考:如果小张是该公司的一名普通员工,那么你认为他的月工资最有可能是多少元?如果小李想到该公司应聘一名普通员工岗位,他最关注的是什么信息?
月收
入/元
45 000
18 000
10 000
5 500
5 000
3 400
3 000
1 000
人数
1
1
1
3
6
1
11
1
注意:
(1)一组数据的众数一定出现在这组数据中.
(2)一组数据的众数可能不止一个.如1,1,2,3,3,5中众数是1和3.
(3)众数是一组数据中出现次数最多的数据而不是数据出现的次数,如1,1,1,2,2,5中众数是1而不是3.
一组数据中出现次数最多的数据称为这组数据的众数.
例3 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你能根据表中的数据为这家鞋店提供进货建议码?
尺码/cm
22
22.5
23
23.5
24
24.5
25
销售量/双
1
2
5
11
7
3
1
典例精析
尺码/cm
22
22.5
23
23.5
24
24.5
25
销售量/双
1
2
5
11
7
3
1
解:由上表看出,在鞋的尺码组成的数据中,_______是这组数据的众数,它的意义是:_______cm的鞋销量最大.因此可以建议鞋店多进_______cm的鞋.
23.5
23.5
23.5
思考:你还能为鞋店进货提出哪些建议?
变式:下面的扇形图描述了某种运动服的S号、M号、L号、XL号、XXL号在一家商场的销售情况.请你为这家商场提出进货建议.
S
16%
8%
24%
30%
22%
M
L
XL
XXL
解:因为众数是M号,所以建议商场多进M号的运动服,其次是进S号,再其次进L号,少进XXL号的运动服.
典例精析
1.跳远比赛中,所有15位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8名,只需要知道所有参赛者成绩的( )
A.平均数 B.众数 C.中位数 D.加权平均数
2. 数学老师布置10道选择题作业,批阅得到如下统计表,根据表中数据可知,这45名学生答对题数组成的样本的中位数是_____,众数是_____.
C
9
8
答对题数 7 8 9 10
人数 4 18 16 7
随堂练习
3.某校男子足球队的年龄分布如下面的条形图所示.请找出这些队员年龄的平均数、众数、中位数,并解释它们的意义.
人数
13
14
15
16
17
18
年龄/岁
0
2
4
6
8
10
分析:总的年龄除以总的人数就是平均数,出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
随堂练习
解:这些队员年龄的平均数为:(13×2+14×6+15×8+16×3+17×2+
18×1)÷22=15,
队员年龄的众数为15,队员年龄的中位数是15.
意义:由平均数是15可说明队员们的平均年龄为15;由众数是15可说明大多数队员的年龄为15岁;由中位数是15可说明有一半队员的年龄大于或等于15岁,有一半队员的年龄小于或等于15岁.
人数
13
14
15
16
17
18
年龄/岁
0
2
4
6
8
10
通过今天的学习,
能说说你的收获和体会吗
你有什么经验与收获让同学们共享呢?
回顾反思
中位数和众数
中位数:中间的一个数,或中间的两个数的平均数.
众数:出现次数最多的数.
平均数、中位数、众数的特征:平均数是最常用的指标,它表示“一般水平”,中位数表示“中等水平”,众数表示“多数水平”.
课堂小结