7.1条件概率与全概率公式
一、单选题
1.2020年初,我国派出医疗小组奔赴相关国家,现有四个医疗小组甲、乙、丙、丁,和有4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A=“4个医疗小组去的国家各不相同”,事件B=“小组甲独自去一个国家”,则P(A|B)=( )
A. B. C. D.
2.设有来自三个地区的各10名,15名和25名考生的报名表,其中女生报名表分别为3份、7份和5份,随机地取一个地区的报名表,从中先后取出两份,则先取到的一份为女生表的概率为( )
A. B. C. D.
3.已知袋子内有7朵大小相同的小花,其中4朵红花,3朵黄花,从中不放回地抽取2次,每次抽取1朵花,那么在已知第一次抽到红花的条件下,第二次也抽到红花的概率是( ).
A. B. C. D.
4.2020年初,我国派出医疗小组奔赴相关国家,现有四个医疗小组甲、乙、丙、丁,和有4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A=“4个医疗小组去的国家各不相同”,事件B=“小组甲独自去一个国家”,则( )
A. B. C. D.
5.一个盒子装有质地、大小、形状都相同的6个球,其中红球3个,黄球2个,蓝球1个.现从中任取两个球,记事件:“取出的两个球颜色不同”,事件:“取出一个红球,一个黄球”,则( )
A. B. C. D.
6.设,,则( )
A. B. C. D.
7.若随机事件,满足,,,则( )
A. B.
C. D.
8.已知盒中装有3只螺口灯池与9只卡口灯泡,这些灯泡的外形都相同且灯口向下放若,现需要一只卡口灯泡,电工师傅每次从中任取一只且不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( )
A. B. C. D.
9.两台机床加工同样的零件,第一台的废品率为0.04,第二台的废品率为0.07,加工出来的零件混放,并设第一台加工的零件是第二台加工零件的2倍,现任取一零件,则它是合格品的概率为( )
A.0.21 B.0.06
C.0.94 D.0.95
10.把一枚骰子连续抛掷两次,记事件为“两次所得点数均为奇数”,为“至少有一次点数是5”,则等于( )
A. B. C. D.
11.甲 乙两人独立地对同一目标各射击一次,命中率分别为和,在目标被击中的条件下,甲 乙同时击中目标的概率为( )
A. B. C. D.
12.在某电视台有一闯关节目,该节目设置有两关,闯关规则是:当第一关闯关成功后,方可进入第二关.为了调查闯关的难度,该电视台调查了参加过此节目的名选手的闯关情况,第一关闯关成功的有人,第一关闯关成功且第二关闯关也成功的选手有人,以闯关成功的频率近似作为闯关成功的概率,已知某个选手第一关闯关成功,则该选手第二关闯关成功的概率为( )
A. B. C. D.
二、填空题
13.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以,和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是___________.
①;②;③事件B与事件相互独立;④,,是两两互斥的事件
14.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下,第二次闭合闭合后出现红灯的概率为________.
15.投掷红、蓝两颗均匀的骰子,设事件:蓝色骰子的点数为5或6;事件:两骰子的点数之和大于9,则在事件发生的条件下事件发生的概率______.
16.有三台车床加工同一型号的零件,第一台加工的次品率为0.06,第二三台加工的次品率均为0.05,加工出来的零件混放在一起.已知第一,二,三台车床加工的零件数分别占总数的0.25,0.3,0.45,任取一个零件,求它是次品的概率______.
17.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率为______.
三、解答题
18.一个盒子中装有只产品,其中只一等品、只二等品.从中取产品两次,每次任取一只,不放回抽样.求在第一次取到一等品时,第二次取到一等品的概率.
19.滑雪是冰雪运动中深受人们喜爱的运动项目,为了了解某市,两个专业滑雪队的技术水平,从这两个队各随机抽取了名队员进行比赛(百分制),其得分如图所示茎叶图.
(1)通过茎叶图比较,两队比赛得分的平均值,的大小及分散程度(不要求计算,给出结论即可);
(2)规定得分在,认定该队员滑雪技术为级,在认定该队员滑雪技术为级,在认定该队员滑雪技术为级.
①现从得分在的样本队员中,按照队与队两大类,用分层抽样的方法随机抽取人进行问卷调查,求这名队员中恰含、两队所有滑雪技术为级的队员的概率;
②从样本中任取名队员,在认定这两名队员滑雪技术为级情况下,求这名队员来自同一滑雪队的概率.
20.某校为缓解高三学生压力,举办了一场趣味运动会,其中有一个项目为篮球定点投篮,比赛分为初赛和复赛.初赛规则为:每人最多投3次,每次投篮的结果相互独立.在处每投进一球得3分,在处每投进一球得2分,否则得0分.将学生得分逐次累加并用表示,如果的值不低于3分就判定为通过初赛,立即停止投篮,否则应继续投篮,直到投完三次为止.现有两种投篮方案:
方案1:先在处投一球,以后都在处投;
方案2:都在处投篮;
已知甲同学在处投篮的命中率为,在处投篮的命中率为.
(1)若甲同学选择方案1,求他初赛结束后所得总分的分布列和数学期望;
(2)你认为甲同学选择哪种方案通过初赛的可能性更大?说明理由.
21.在一个袋子里有大小一样的10个球,其中有6个红球和4个白球.现无放回地依次从中摸出1个球,求第一次摸出红球且第二次摸出白球的概率.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.A
2.D
3.D
4.A
5.C
6.C
7.D
8.C
9.D
10.B
11.B
12.C
13.②④
14..
15.
16.
17.
18.
19.(1);队队员的比赛得分比较分散,队队员的比赛得分比较集中;(2)①;②.
20.(1)分布列见解析,;
(2)甲同学选择方案2通过初赛的可能性更大,理由见解析.
21.
答案第1页,共2页
答案第1页,共2页