—人教版数学八年级下册19.2.2一次函数 第2课时 课件(共19张PPT)

文档属性

名称 —人教版数学八年级下册19.2.2一次函数 第2课时 课件(共19张PPT)
格式 pptx
文件大小 342.2KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2022-05-12 13:04:03

图片预览

文档简介

(共19张PPT)
导入新课
讲授新课
当堂练习
课堂小结
19.2.2 一次函数
第十九章 一次函数
第2课时 一次函数的图象和性质
导入新课
复习引入
形如 的函数,叫做正比例函数;
形如 的函数,叫做一次函数;
当b=0时,y=kx+b就变成了 ,所以说正比例函数是一种特殊的一次函数.
正比例函数的图象是一条经过 点的 .
y=kx(k是常数,k≠0)
y=kx+b(k,b是常数,k≠0)
y=kx

直线
正比例函数
解析式 y =kx(k≠0)
性质:k>0,y 随x 的增大而增大;k<0,y 随 x 的增大而减小.
一次函数
解析式 y =kx+b(k≠0)
针对函数 y =kx+b,要研究什么?怎样研究?
图象:经过原点和
(1,k)的一条直线
x
y
O
k>0
k<0
x
y
O


  研究函数 y =kx+b(k≠0)的图象和性质:
  研究方法:
  画图象→观察图象→变量(坐标)意义解释.
讲授新课
一次函数的图象

1.画出函数y=-6x与y=-6x+5的图象.
x -2 -1 0 1 2
y=-6x
y=-6x+5
12
6
0
-6
-12
17
11
5
-1
-7
O
2
x
y
1
2
3
-2
-1
8
6
4
10
12
列表
描点
连线
观察与比较:
这两个函数的图象形状都是 ,并且倾斜程度 .函数y =-6x的图象经过原点,函数y =-6x+5的图象与y轴交于点 ,即它可以看作由直线y=-6x向 平移 个单位长度得到.
比较上面两个函数图象的相同点与不同点.填出你的观察结果并与同伴交流.
一条直线
(0,5)
相同

5
O
2
x
y
1
2
3
-2
-1
8
6
4
10
12
2
-2
-4
-6
-2
2
x
y
O
x … -2 -1 0 1 2 …
y … -7 -5 -3 -1 1 …
描点
连线
列表
2.(1)画一次函数 y =2x-3 的图象.
(2)画正比例函数 y =2x的图象.
y =2x-3
y =2x
4
合作探究
比较上面两个函数的图象回答下列问题:
(2)函数 y1=2x 的图象经过 ,函数y2= 2x-3的图像与y轴交于点( ),即它可以看作由直线 y1=2x向 平移 个单位长度而得到.
(1)这两个函数的图象形状都是 ,并且倾斜程度 .
原点
0 ,-3

3
一条直线
相同
观察与思考
一次函数y=kx+b(k≠0)的图象经过点(0,b),可以由正比例函数y=kx的图象平移 个单位长度得到(当b>0时,向 平移;当b<0时,向 平移).


要点归纳
怎样画一次函数的图象最简单?为什么?
由于两点确定一条直线,画一次函数图象时我们只需描点(0,b)和点 或 (1,k+b),连线即可.
思考:与x轴的交点坐标是什么?
提示:y=kx+b与x轴的交点坐标是
O
例1 用你认为最简单的方法画出下列函数的图象:
(1) y=-2x-1;(2) y=0.5x+1
x 0 1
y=-2x-1
y=0.5x+1
-1
-3
1
y=-2x-1
典例精析
1.5
y=0.5x+1
也可以先画直线 y=-2x与 y=0.5x,再分别平移它们,也能得到直线y=-2x-1与 y=0.5x+1
画出函数y=x+1, y=-x+1, y=2x+1,y=-2x+1的图象.
x 0 1
y=x+1
y=-x+1
y=2x+1
y=-2x+1
1
2
1
0
1
3
1
-1
一次函数的性质

O
1
x
y
1
-1
-1
y=x+1
y=-x+1
y=2x+1
y=-2x+1
6
-2
-5
5
x
y
O
2
4
A
B
C
D
E
y =x+1
y =3x+1
y =-x+1
y =-3x+1
当k>0时,直线从左向右上升,y 随x 的增大而增大;
当k<0时,直线从左向右下降,y 随x 的增大而减小.
观察函数y=x+1, y=-x+1, y=2x+1,y=-2x+1的图象.
一次函数y=kx+b(k、b是常数,k≠0)中,k的正、负对函数图象有什么影响?
在一次函数y=kx+b中,
当k>0时,y的值随着x值的增大而增大;
当k<0时,y的值随着x值的增大而减小.
由此得到一次函数性质:
要点归纳
例2 P1(x1,y1),P2(x2,y2)是一次函数y=-0.5x+3图象
上的两点,下列判断中,正确的是( )
A.y1>y2 C.当x1<x2时,y1<y2
B. y1<y2 D.当x1<x2时,y1>y2
D
解析:根据一次函数的性质: 当k<0时,y随x的增大而减小,所以D为正确答案.
提示:反过来也成立:y越大,x就越小.
k 0,b 0
>
>
k 0,b 0
k 0,b 0
k 0,b 0
k 0,b 0
k 0,b 0
>
>
>
<
<
<
<
<
=
=
思考:根据一次函数的图象判断k,b的正负,并说出直线经过的象限:
一次函数经过象限与字母k,b的关系

归纳总结
一次函数y=kx+b中,k,b的正负对函数图象及性质有什么影响?
当k>0时,直线y=kx+b由左到右逐渐上升,y随x的增大而增大.
当k<0时,直线y=kx+b由左到右逐渐下降,y随x的增大而减小.
① b>0时,直线经过第 一、二、四象限;
② b<0时,直线经过第二、三、四象限.
① b>0时,直线经过第一、二、三象限;
② b<0时,直线经过第一、三、四象限.
例3 已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的m的值:
(1)函数值y 随x的增大而增大;
(2)函数图象与y 轴的负半轴相交;
(3)函数的图象过第二、三、四象限;
解:(1)由题意得1-2m>0,解得
(2)由题意得1-2m≠0且m-1<0,即
(3)由题意得1-2m<0且m-1<0,解得
1.若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则(  )
A.k<2 B.k>2 C.k>0 D.k<0
2. 一次函数y=2x﹣3的图象经过的象限是(  )
A.一、二、三 B.二、三、四
C.一、三、四 D.一、二、四
B
C
连接中考
课堂小结
一次函数函数的图象和性质
当k>0时,y的值随x值的增大而增大;
当k<0时,y的值随x值的增大而减小.
与y轴的交点是(0,b),
与x轴的交点是( ,0),
当k>0, b>0时,经过一、二、三象限;
当k>0 ,b<0时,经过一、三、四象限;
当k<0 ,b>0时,经过 一、二、四象限;
当k<0 ,b<0时,经过二、三、四象限.
图象
性质