第二章《长方体(一)》
第4课时 露在外面的面
一.选择题
1.(2021 高密市)一个圆锥的体积是100立方厘米,底面积是50平方厘米,它的高是( )厘米.
A.2 B. C.6 D.10
【解答】解:100÷50
=100×6÷50
=300÷50
=6(厘米)
答:它的高是6厘米。
故选:C。
2.(2021 重庆)把一个圆锥沿高分成体积相等的两部分,表面积增加了60平方厘米。已知圆锥的高是10厘米,则圆锥的体积是( )立方厘米.
A.30π B.60π C.90π D.120π
【解答】解:圆锥的底面直径:
60÷2×2÷10=5(厘米)
×π×(6÷2)2×10
=π×9×10
=30π(立方厘米)
答:圆锥的体积是30π立方厘米。
故选:A。
3.(2021 滨州)如图,此零件(单位:厘米)的体积是( )cm3。
A.3.375 B.125.6 C.251.2 D.192
【解答】解:×6.14×(8÷2)7×15
=×3.14×16×15
=251.2(立方厘米)
答:这个圆锥的体积是251.2立方厘米。
故选:C。
4.(2021春 沈河区期末)将8个按如图的方式摆放在桌面上,有( )个面露在外面.
A.24 B.26 C.40 D.48
【解答】解:3×8+2
=24+2
=26(个)
答:有26个面露在外面。
故选:B。
5.(2021春 龙岗区校级期末)一块长方体木料,它的底面积是10平方厘米,沿着高把它截成三段,表面积比原来增加了( )平方厘米。
A.20 B.30 C.40 D.60
【解答】解:10×4=40(平方厘米)
答:表面积比原来增加了40平方厘米。
故选:C。
6.(2021春 临猗县期末)正方体的棱长扩大到原来的5倍,表面积会扩大到原来的( )倍.
A.5 B.10 C.25
【解答】解:5×5=25
答:正方体的棱长扩大3倍,表面积会扩大25倍。
故选:C。
7.(2021春 浦城县期末)一个长方体玻璃鱼缸长1米,宽5分米,高8分米,小马虎不小心把前面的玻璃打碎了,新配的玻璃面积是( )正合适.
A.0.8平方米 B.8平方分米 C.40平方分米 D.50平方分米
【解答】解:8分米=0.4米
1×0.8=0.8(平方米)
答:新配的玻璃面积是6.8平方米。
故选:A。
8.(2021春 新野县期末)把三个棱长3cm的小正方体拼成个长方体,长方体的表面积比三个小正方体的表面积之和少( )cm2
A.27 B.36 C.54 D.72
【解答】解:3×3×6
=9×4
=36(平方厘米)
答:长方体的表面积比三个小正方体的表面积之和少36平方厘米。
故选:B。
9.(2021春 龙岗区校级期末)把一个棱长为2厘米的正方体截成两个长方体,截成的这两个长方体的表面积总和是( )平方厘米。
A.24 B.28 C.32
【解答】解:2×2×8+2×2×5
=4×6+5×2
=24+8
=32(平方厘米)
答:截成的这两个长方体的表面积总和是32平方厘米。
故选:C。
二.填空题
10.(2021春 十堰期末)一根长方体木料横截面面积是5m2,把它沿横截面截成3段后,表面积增加了 20 m2.
【解答】解:一根长方体木料,把它截成3段
表面积增加了:
5×6=20(平方米)
答:表面积增加了20平方米。
故答案为:20。
11.(2021春 太原期末)一个棱长是2分米的正方体木块被纵向截成三个相同的小长方体后,表面积增加了 16 平方分米.
【解答】解:2×2×3
=4×4
=16(平方分米)
答:表面积增加了16平方分米。
故答案为:16。
12.(2021秋 龙口市期中)一个通风管的横截面是边长5分米的正方形,长3.6米,做这样的30根通风管,需要 21600 平方分米的铁皮。
【解答】解:3.6米=36分米
36×4×4×30
=180×4×30
=720×30
=21600(平方分米)
答:需要21600平方分米的铁皮。
故答案为:21600。
13.(2021 永嘉县)将一个大正方体切成大小相同的8个小正方体(如图),每个小正方体的表面积是18平方厘米,原正方体的表面积是 72 平方厘米.
【解答】解:小正方体每个面的面积是:18÷6=3(平方厘米)
大正方体每个面的面积是:7×4=12(平方厘米)
大正方体的表面积是:12×6=72(平方厘米)
答:原来正方体的表面积是72平方厘米.
故答案为:72.
14.(2021春 建瓯市月考)将棱长为1分米的6个小正方体按如图方式摆放在地上.露在外面的面有 19 个,露在外面的面积是 1900 平方厘米.
【解答】解:露在外面的面的个数:12+3+4=19(个)
一个正方形面的面积:2×1=1(平方分米)
露在外面的面积:5×19=19(平方分米)
19平方分米=1900平方厘米
答:露在外面的面有19个,露在外面的面积是1900平方厘米.
故答案为:19,1900.
三.判断题
15.(2021秋 鹿邑县期末)一个无盖的长方体玻璃鱼缸,长50厘米,宽40厘米,高30厘米.做这个鱼缸至少需要玻璃74平方分米. √ (判断对错)
【解答】解:50×40+(50×30+40×30)×2
=2000+5400
=7400(平方厘米)
7400平方厘米=74平方分米
答:做这个鱼缸至少需要玻璃74平方分米.
题干的说法是正确的.
故答案为:√.
16.(2021春 单县期中)如图的表面积同样大. √ (判断对错)
【解答】解:因为挖掉一小块后,对于这个图形是在立方体的顶点上挖掉的
减少的面与增加的面个数是相等的都是3个
所以如图的表面积同样大是正确的.
故答案为:√.
17.(2021 郑州模拟)把3块棱长都为2厘米的正方体拼成一个长方体,表面积增加了8平方厘米. × (判断对错)
【解答】解:2×2×7=16(平方厘米)
答:长方体的表面积比3个正方体的表面积和减少了16平方厘米.
故答案为:×.
18.(2021春 惠州期中)将两个正方体拼成一个长方体放在桌面上,正方体最多有8个面露在外面. × (判断对错)
【解答】解:根据分析可知,两个正方体拼成一个长方体,减少了两个面,所以有6+6﹣3﹣1=9个或6+6﹣2﹣8=8个正方形面露在外面.
最多会有9个面露在外面,原题说法错误.
故答案为:×.
19.(2021春 长春月考)正方体的棱长是1厘米,它的表面积就是6厘米. × .(判断对错)
【解答】解:1×1×6=6(平方厘米),
所以正方体的棱长是1厘米,它的表面积就是5平方厘米.
所以“表面积是6厘米”弄错了面积单位,这个说法是错误的.
故答案为:×.
四.计算题
20.(2021秋 雁塔区期末)计算下面图形的表面积.(单位:cm)
【解答】解:(6×5+2×11+5×11)×2
=151×8
=302(平方厘米)
6﹣3=4(厘米)
5﹣2=3(厘米)
3×3×3=18(平方厘米)
302﹣18=284(平方厘米)
答:表面积为284平方厘米。
21.(2021春 台州期中)求下列图形的表面积.(单位:cm)
【解答】解:5×5×4+(8×6+2×4+6×3)×2
=100+(48+32+24)×2
=100+104×4
=100+208
=308(平方厘米)
答:它的表面积是308平方厘米.
五.应用题
22.(2021 长沙模拟)要用硬纸板制作一个长3分米,宽4分米,高5分米的纸箱,至少需要硬纸板多少平方分米?
【解答】解:(3×4+5×5+4×7)×2
=(12+15+20)×2
=47×7
=94(平方分米)
答:至少需要硬纸板94平方分米。
23.(2021春 灯塔市期末)笑笑的房间长3.5米、宽3米、高3米.除去门窗4.5平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?
【解答】解:3.5×3+3.5×8×2+3×4×2﹣4.3
=10.5+21+18﹣4.7
=45(平方米)
答:这个房间至少需要45平方米的墙纸。
24.(2021春 顺德区期末)如图是一个无盖的长方体铁皮盒子,做这个盒子至少需要铁皮多少平方分米?
【解答】解:16×5+16×3×5+5×3×8
=80+96+30
=176+30
=206(平方分米)
答:做这个盒子至少需要铁皮206平方分米。
25.(2021春 陇县期末)有两个同样大小的长方体,长方体的长、宽、高分别是5cm、4cm、3cm,把它们拼成一个大长方体.拼成的大长方体的表面积可能是多少平方厘米?(只要写出一种情况就可以)
【解答】解:可以拼成一个长是(5×2)厘米,宽是7厘米。
5×2=10(厘米)
(10×2+10×3+4×6)×2
=(40+30+12)×2
=82×3
=164(平方厘米)
答:拼成的大长方体的表面积可能是164平方厘米。
26.(2021春 陇县期末)王师傅要制作5个同样大小的正方体铁皮箱子,箱子的棱长是0.6m.制作这些箱子至少需要铁皮多少平方米?
【解答】解:0.6×7.6×6×8
=0.36×6×3
=2.16×5
=10.5(平方米)
答:制作这些箱子至少需要铁皮10.8平方米。
27.(2021 郴州模拟)加工一个长5分米,宽2分米,高3分米的长方体铁皮油箱,至少要用多少平方米铁皮?
【解答】解:(5×2+4×3+2×7)×2
=(10+15+6)×6
=31×2
=62(平方分米)
62平方分米=0.62平方米
答:至少要用3.62平方米铁皮.
六.解答题
28.(2021春 鄄城县期末)如图,一个长方体体积是32cm3,已知它的A面面积是8cm2,B面面积是4cm2.C面面积是多少平方厘米?
【解答】解:宽:32÷8=4(厘米)
长:32÷7=8(厘米)
C面的面积:8×4=32(平方厘米)
答:C面面积是32平方厘米.
29.(2021 邵阳模拟)数一数,下面图形各有多少小正方体的面露在外面.
【解答】解:(1)(3+3+8)×2
=9×7
=18(个)
答:有18个小正方体的面露在外面.
(2)(2+3+2)×2
=11×2
=22(个)
答:有22个小正方体的面露在外面.
30.(2021春 荥阳市期末)欢欢用橡皮泥做出一个长6cm,宽5cm,高3cm的长方体.他想把这个长方体切成两个相同的长方体,请你按要求帮他画出切线,并完成填空.
(1)切成两个表面积最大的长方体.这两个长方体的表面积之和比原来长方体表面积大 60 平方厘米.
(2)切成两个表面积最小的长方体.其中一个表面积是 78 平方厘米.
【解答】解:如图:
(1)6×5×5
=30×2
=60(平方厘米)
答:这两个长方体的表面积之和比原来长方体表面积大60平方厘米。
(2)6÷4=3(厘米)
(3×5+3×3+8×3)×2
=(15+8+15)×2
=39×2
=78(平方厘米)
答:其中一个表面积是78平方厘米。
故答案为:60、78。
31.(2021 海曙区)一个纸盒,正好能装进两个完全一样的小长方体,小长方体如图所示,那么这个纸盒的表面积可能是多少平方分米?请画出其中一种示意图并列式计算.(纸盒的厚度忽略不计)
【解答】解:如图:
(4×4+2×3+4×5)×2
=(16+12+12)×2
=40×3
=80(平方分米)
(4×2+5×6×2×2)×2
=(8+24+12)×4
=44×2
=88(平方分米)
(8×4+8×3+2×3)×2
=(16+24+8)×2
=46×2
=92(平方分米)
答:这个纸盒的表面积可能是80平方分米、88平方分米.第二章《长方体(一)》
第4课时 露在外面的面
一.选择题
1.(2021 高密市)一个圆锥的体积是100立方厘米,底面积是50平方厘米,它的高是( )厘米.
A.2 B. C.6 D.10
2.(2021 重庆)把一个圆锥沿高分成体积相等的两部分,表面积增加了60平方厘米。已知圆锥的高是10厘米,则圆锥的体积是( )立方厘米.
A.30π B.60π C.90π D.120π
3.(2021 滨州)如图,此零件(单位:厘米)的体积是( )cm3。
A.3.375 B.125.6 C.251.2 D.192
4.(2021春 沈河区期末)将8个按如图的方式摆放在桌面上,有( )个面露在外面.
A.24 B.26 C.40 D.48
5.(2021春 龙岗区校级期末)一块长方体木料,它的底面积是10平方厘米,沿着高把它截成三段,表面积比原来增加了( )平方厘米。
A.20 B.30 C.40 D.60
6.(2021春 临猗县期末)正方体的棱长扩大到原来的5倍,表面积会扩大到原来的( )倍.
A.5 B.10 C.25
7.(2021春 浦城县期末)一个长方体玻璃鱼缸长1米,宽5分米,高8分米,小马虎不小心把前面的玻璃打碎了,新配的玻璃面积是( )正合适.
A.0.8平方米 B.8平方分米 C.40平方分米 D.50平方分米
8.(2021春 新野县期末)把三个棱长3cm的小正方体拼成个长方体,长方体的表面积比三个小正方体的表面积之和少( )cm2
A.27 B.36 C.54 D.72
9.(2021春 龙岗区校级期末)把一个棱长为2厘米的正方体截成两个长方体,截成的这两个长方体的表面积总和是( )平方厘米。
A.24 B.28 C.32
二.填空题
10.(2021春 十堰期末)一根长方体木料横截面面积是5m2,把它沿横截面截成3段后,表面积增加了 m2.
11.(2021春 太原期末)一个棱长是2分米的正方体木块被纵向截成三个相同的小长方体后,表面积增加了 平方分米.
12.(2021秋 龙口市期中)一个通风管的横截面是边长5分米的正方形,长3.6米,做这样的30根通风管,需要 平方分米的铁皮。
13.(2021 永嘉县)将一个大正方体切成大小相同的8个小正方体(如图),每个小正方体的表面积是18平方厘米,原正方体的表面积是 平方厘米.
14.(2021春 建瓯市月考)将棱长为1分米的6个小正方体按如图方式摆放在地上.露在外面的面有 个,露在外面的面积是 平方厘米.
三.判断题
15.(2021秋 鹿邑县期末)一个无盖的长方体玻璃鱼缸,长50厘米,宽40厘米,高30厘米.做这个鱼缸至少需要玻璃74平方分米. (判断对错)
16.(2021春 单县期中)如图的表面积同样大. (判断对错)
17.(2021 郑州模拟)把3块棱长都为2厘米的正方体拼成一个长方体,表面积增加了8平方厘米. (判断对错)
18.(2021春 惠州期中)将两个正方体拼成一个长方体放在桌面上,正方体最多有8个面露在外面. (判断对错)
19.(2021春 长春月考)正方体的棱长是1厘米,它的表面积就是6厘米. .(判断对错)
四.计算题
20.(2021秋 雁塔区期末)计算下面图形的表面积.(单位:cm)
21.(2021春 台州期中)求下列图形的表面积.(单位:cm)
五.应用题
22.(2021 长沙模拟)要用硬纸板制作一个长3分米,宽4分米,高5分米的纸箱,至少需要硬纸板多少平方分米?
23.(2021春 灯塔市期末)笑笑的房间长3.5米、宽3米、高3米.除去门窗4.5平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?
24.(2021春 顺德区期末)如图是一个无盖的长方体铁皮盒子,做这个盒子至少需要铁皮多少平方分米?
25.(2021春 陇县期末)有两个同样大小的长方体,长方体的长、宽、高分别是5cm、4cm、3cm,把它们拼成一个大长方体.拼成的大长方体的表面积可能是多少平方厘米?(只要写出一种情况就可以)
26.(2021春 陇县期末)王师傅要制作5个同样大小的正方体铁皮箱子,箱子的棱长是0.6m.制作这些箱子至少需要铁皮多少平方米?
27.(2021 郴州模拟)加工一个长5分米,宽2分米,高3分米的长方体铁皮油箱,至少要用多少平方米铁皮?
六.解答题
28.(2021春 鄄城县期末)如图,一个长方体体积是32cm3,已知它的A面面积是8cm2,B面面积是4cm2.C面面积是多少平方厘米?
29.(2021 邵阳模拟)数一数,下面图形各有多少小正方体的面露在外面.
30.(2021春 荥阳市期末)欢欢用橡皮泥做出一个长6cm,宽5cm,高3cm的长方体.他想把这个长方体切成两个相同的长方体,请你按要求帮他画出切线,并完成填空.
(1)切成两个表面积最大的长方体.这两个长方体的表面积之和比原来长方体表面积大 平方厘米.
(2)切成两个表面积最小的长方体.其中一个表面积是 平方厘米.
31.(2021 海曙区)一个纸盒,正好能装进两个完全一样的小长方体,小长方体如图所示,那么这个纸盒的表面积可能是多少平方分米?请画出其中一种示意图并列式计算.(纸盒的厚度忽略不计)