北师大新版八年级下册《第2章 一元一次不等式(组)》单元测试卷(6)
一、选择题
1.下列按条件列不等式错误的是( )
A.若a是非负数,则a≥0
B.若x的值不小于1,则x≥1
C.若m与﹣1的和小于或等于0,则m﹣1≤0
D.若x的值不大于3,则x<3
2.设“〇”“△”“□”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“〇”“△”“□”这三种物体按质量从大到小的排列顺序应为( )
A.□、〇、△ B.□、△、〇 C.△、□、〇 D.△、〇、□
3.如果m<n<0,那么下列结论中正确的是( )
A.m﹣9<n﹣9 B.m﹣9>n﹣9 C.m﹣9≥n﹣9 D.m﹣9≤n﹣9
4.若a>b,则下列不等式变形错误的是( )
A.a+1>b+1 B. C.3a﹣4>3b﹣4 D.4﹣3a>4﹣3b
5.用不等式表示如图所示的解集,其中正确的是( )
A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2
6.不等式x﹣2≥0的解集在数轴上表示正确的是( )
A. B.
C. D.
7.不等式的最大整数解是( )
A.﹣2 B.﹣1 C.0 D.﹣3
8.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )
A.16个 B.17个 C.33个 D.34个
9.如图,一次函数y=kx+b的图象经过点A(﹣2,4),则关于x的不等式kx+b>4的解集为( )
A.x>﹣2 B.x<﹣2 C.x>4 D.x<4
10.在平面直角坐标系内,P(2x﹣6,x﹣5)在第四象限,则x的取值范围为( )
A.3<x<5 B.﹣3<x<5 C.﹣5<x<3 D.﹣5<x<﹣3
二、填空题
11.从2,3,4,5,6中任取两个数就组成一组数,其中两数之和小于10的数组共有 组.
12.不等式组的解集是 .
13.当x 时,代数式2x﹣5的值为0,当x 时,代数式2x﹣5的值不大于0.
14.不等式﹣5x≥﹣13的解集中,最大的整数解是 .
15.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为 .
16.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则m= ;该不等式的解集为 .
17.某人10:10离家赶11:00的火车,已知他家离车站10公里,他离家后先以3公里/时的速度走了5分钟,然后乘公共汽车去车站,公共汽车每小时至少走 公里才能不误当次火车.
三、解答题
18.解不等式组把解集表示在数轴上,并求出不等式组的整数解.
19.某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不答或答错一题扣2分,某同学要想得分为60分以上,他至少应答对多少道题?
20.某班同学去春游花了250元包租了一辆客车,如果参加春游的同学每人交8元钱租车费,还不够,如果每人交9元,还用不了.用不等式表示出上述问题中存在的不等关系.
21.某口罩加工厂有A、B两组工人共150人,A组工人每人每小时可加工口罩70只,B组工人每人每小时可加工口罩50只,A、B两组工人每小时一共可加工口罩9300只.
(1)求A、B两组工人各多少人;
(2)由于疫情加重,A、B两组工人均提高了工作效率,一名A组工人和一名B组工人每小时共可生产口罩200只,若A、B两组工人每小时至少加工16000只口罩,那么A组工人每人每小时至少加工多少只口罩?
北师大新版八年级下册《第2章 一元一次不等式(组)》单元测试卷(6)
参考答案与试题解析
一、选择题
1.下列按条件列不等式错误的是( )
A.若a是非负数,则a≥0
B.若x的值不小于1,则x≥1
C.若m与﹣1的和小于或等于0,则m﹣1≤0
D.若x的值不大于3,则x<3
【解答】解:A、若a是非负数,则a≥0,不符合题意;
B、若x的值不小于1,则x≥1,不符合题意;
C、若m与﹣1的和小于或等于0,则m﹣1≤0,不符合题意;
D、若x的值不大于3,则x≤3,符合题意.
故选:D.
2.设“〇”“△”“□”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“〇”“△”“□”这三种物体按质量从大到小的排列顺序应为( )
A.□、〇、△ B.□、△、〇 C.△、□、〇 D.△、〇、□
【解答】解:设△、〇、□的质量为a、b、c,
由图形可得:,
由①得:c>a,
由②得:a=2b,
故可得c>a>b.
所以这三种物体按质量从大到小的排列顺序为□△〇.
故选:B.
3.如果m<n<0,那么下列结论中正确的是( )
A.m﹣9<n﹣9 B.m﹣9>n﹣9 C.m﹣9≥n﹣9 D.m﹣9≤n﹣9
【解答】解:A、根据不等式的性质,不等式m<n两边同时减去9,得到:m﹣9<n﹣9,原变形正确,故此选项符合题意;
B、根据不等式的性质,不等式m<n两边同时减去9,得到:m﹣9<n﹣9,原变形错误,故此选项不符合题意;
C、根据不等式的性质,不等式m<n两边同时减去9,得到:m﹣9<n﹣9,原变形错误,故此选项不符合题意;
D、根据不等式的性质,不等式m<n两边同时减去9,得到:m﹣9<n﹣9,原变形错误,故此选项不符合题意.
故选:A.
4.若a>b,则下列不等式变形错误的是( )
A.a+1>b+1 B. C.3a﹣4>3b﹣4 D.4﹣3a>4﹣3b
【解答】解:A、在不等式a>b的两边同时加上1,不等式仍成立,即a+1>b+1.故本选项变形正确;
B、在不等式a>b的两边同时除以2,不等式仍成立,即.故本选项变形正确;
C、在不等式a>b的两边同时乘以3再减去4,不等式仍成立,即3a﹣4>3b﹣4.故本选项变形正确;
D、在不等式a>b的两边同时乘以﹣3再减去4,不等号方向改变,即4﹣3a<4﹣3b.故本选项变形错误;
故选:D.
5.用不等式表示如图所示的解集,其中正确的是( )
A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2
【解答】解:在数轴上表示的解集为x<﹣2,
故选:C.
6.不等式x﹣2≥0的解集在数轴上表示正确的是( )
A. B.
C. D.
【解答】解:不等式解得:x≥2,
表示在数轴上,如图所示:
故选:C.
7.不等式的最大整数解是( )
A.﹣2 B.﹣1 C.0 D.﹣3
【解答】解:,
去分母得3x+2<2x,
移项、合并同类项得x<﹣2,
故原不等式的解集是x<﹣2,
故不等式的最大整数解是﹣3.
故选:D.
8.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )
A.16个 B.17个 C.33个 D.34个
【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:
80m+50(50﹣m)≤3000,
解得:m≤16,
∵m为整数,
∴m最大取16,
∴最多可以买16个篮球.
故选:A.
9.如图,一次函数y=kx+b的图象经过点A(﹣2,4),则关于x的不等式kx+b>4的解集为( )
A.x>﹣2 B.x<﹣2 C.x>4 D.x<4
【解答】解:∵一次函数y=kx+b的图象经过点A(﹣2,4),
∴关于x的不等式kx+b>4的解集是x>﹣2,
故选:A.
10.在平面直角坐标系内,P(2x﹣6,x﹣5)在第四象限,则x的取值范围为( )
A.3<x<5 B.﹣3<x<5 C.﹣5<x<3 D.﹣5<x<﹣3
【解答】解:∵点P(2x﹣6,x﹣5)在第四象限,
∴,
解得:3<x<5.
故选:A.
二、填空题
11.从2,3,4,5,6中任取两个数就组成一组数,其中两数之和小于10的数组共有 8 组.
【解答】解:从2,3,4,5,6中任取两个数就组成一组数,可能为2+3=5,2+4=6,2+5=7,2+6=8,3+4=7,3+5=8,3+6=9,4+5=9,4+6=10,5+6=11,
其中小于10的有8组,
故答案为:8.
12.不等式组的解集是 ﹣1≤x<3 .
【解答】解:,
解不等式x﹣3<0,得:x<3,
解不等式x+1≥0,得:x≥﹣1,
故不等式组的解集为:1≤x<3,
故答案为:﹣1≤x<3.
13.当x = 时,代数式2x﹣5的值为0,当x ≤ 时,代数式2x﹣5的值不大于0.
【解答】解:由2x﹣5=0,得
x=;
由2x﹣5≤0,得
x≤.
14.不等式﹣5x≥﹣13的解集中,最大的整数解是 x=2 .
【解答】解:不等式﹣5x≥﹣13的解集为x≤,
所以最大的整数解是x=2.
15.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为 4 .
【解答】解:去分母得,x﹣m>3(3﹣m),
去括号得,x﹣m>9﹣3m,
移项,合并同类项得,x>9﹣2m,
∵此不等式的解集为x>1,
∴9﹣2m=1,
解得m=4.
故答案为:4.
16.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则m= 0 ;该不等式的解集为 x<﹣3 .
【解答】解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,
解得m=0,
则原不等式化为:﹣2x﹣1>5,
解得x<﹣3.
故答案为:0,x<﹣3.
17.某人10:10离家赶11:00的火车,已知他家离车站10公里,他离家后先以3公里/时的速度走了5分钟,然后乘公共汽车去车站,公共汽车每小时至少走 13 公里才能不误当次火车.
【解答】解:设公共汽车每小时走x公里才能不误当次火车,依题意得
+≤
解之得,x≥13
所以,公共汽车每小时至少走13公里才能不误当次火车.
三、解答题
18.解不等式组把解集表示在数轴上,并求出不等式组的整数解.
【解答】解:
由①得
由②得x<3
∴原不等式组的解集为≤x<3
数轴表示:
不等式组的整数解是﹣1,0,1,2.
19.某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不答或答错一题扣2分,某同学要想得分为60分以上,他至少应答对多少道题?
【解答】解:设这个学生要答对x道题,则答错的题目为(16﹣x)道题.
依题意得:6x﹣2(16﹣x)>60,
6x﹣32+2x>60,
8x>92,
x>11,
其中x的最小整数为12.
答:他至少应答对12道题.
20.某班同学去春游花了250元包租了一辆客车,如果参加春游的同学每人交8元钱租车费,还不够,如果每人交9元,还用不了.用不等式表示出上述问题中存在的不等关系.
【解答】解:设参加春游的同学x人,由题意得:
.
21.某口罩加工厂有A、B两组工人共150人,A组工人每人每小时可加工口罩70只,B组工人每人每小时可加工口罩50只,A、B两组工人每小时一共可加工口罩9300只.
(1)求A、B两组工人各多少人;
(2)由于疫情加重,A、B两组工人均提高了工作效率,一名A组工人和一名B组工人每小时共可生产口罩200只,若A、B两组工人每小时至少加工16000只口罩,那么A组工人每人每小时至少加工多少只口罩?
【解答】解:(1)设A组工人有x人,B组工人有(150﹣x)人,根据题意可得:
70x+50(150﹣x)=9300,
解得:x=90,则150﹣x=60,
答:A组工人有90人,B组工人有60人;
(2)设A组工人每小时加工a只口罩,则B组工人每人每小时加工(200﹣a)只口罩,
根据题意可得:90a+60(200﹣a)≥16000,
解得:a≥133,
∵a为正整数,
∴a≥134,
答:A组工人每小时至少加工134只口罩.
第1页(共3页)