北师大新版八年级下册《第3章 图形的平移与旋转》单元测试卷 (word版含解析)

文档属性

名称 北师大新版八年级下册《第3章 图形的平移与旋转》单元测试卷 (word版含解析)
格式 doc
文件大小 371.0KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2022-05-14 16:50:08

图片预览

文档简介

北师大新版八年级下册《第3章 图形的平移与旋转》单元测试卷(3)
一、选择题(共10小题,3*10=30)
1.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是(  )
A. B. C. D.
2.(3分)下列现象属于平移的是(  )
A.投影仪将图片投影转换到屏幕上
B.水平运输带上砖块的运动
C.把打开的课本合上
D.卫星绕地球运动
3.(3分)如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是(  )
A.先把△ABC向左平移5个单位,再向下平移2个单位
B.先把△ABC向右平移5个单位,再向下平移2个单位
C.先把△ABC向左平移5个单位,再向上平移2个单位
D.先把△ABC向右平移5个单位,再向上平移2个单位
4.(3分)如图,两个全等的直角三角形重叠在一起,将Rt△ABC沿着BC的方向平移到Rt△DEF的位置,已知AB=5,DO=2,平移距离为3,则阴影部分的面积为(  )
A.12 B.24 C.21 D.20.5
5.(3分)一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有(  )
A.①②③ B.①②④ C.①③④ D.②③④
6.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是(  )
A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1
7.(3分)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为(  )
A.30° B.60° C.90° D.120°
8.(3分)如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为(  )
A.6cm B.4πcm C.2πcm D.3cm
9.(3分)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是(  )
A.70° B.35° C.40° D.50°
10.(3分)如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对△ABC分别作下列变换:
①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;
②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;
③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90度.
其中,能将△ABC变换成△PQR的是(  )
A.①② B.①③ C.②③ D.①②③
二.填空题(共8小题,3*8=24)
11.(3分)正三角形中心旋转   度的整倍数之后能和自己重合.
12.(3分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是   .
13.(3分)如图,下面的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为   cm2.
14.(3分)如图,根据长方形中的数据,计算阴影部分的面积为   .
15.(3分)如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为40°或20°时,△ADF是   三角形.
16.(3分)一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是有   .
17.(3分)如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E点的坐标是   .
18.(3分)如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为   .
三.解答题(7小题,共66分)
19.(8分)如图,△ABC沿直线l向右移了3厘米,得△FDE,且BC=6厘米,∠B=40°.
(1)求BE;
(2)求∠FDB的度数;
(3)找出图中相等的线段(不另添加线段);
(4)找出图中互相平行的线段(不另添加线段)
20.(8分)△ABC在平面直角坐标系xOy中的位置如图所示.
(1)作△ABC关于点C成中心对称的△A1B1C1.
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
21.(8分)如图,△DEF是由△ABC沿箭头方向平移得到的,已知∠ACB=70°,AC=10cm,EF=6cm,CE=2cm,试求:
(1)∠DFE的大小;
(2)DF的长及A点移动的距离.
22.(10分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.
(1)补充完成图形;
(2)若EF∥CD,求证:∠BDC=90°.
23.(10分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.
(1)求证:△BDC≌△EFC;
(2)若EF∥CD,求证:∠BDC=90°.
24.(10分)如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.
(1)求∠BCD的度数;
(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.
①求∠C′CB的度数;
②求证:△C′BD'≌△CAE.
25.(12分)如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.
北师大新版八年级下册《第3章 图形的平移与旋转》单元测试卷(3)
参考答案与试题解析
一、选择题(共10小题,3*10=30)
1.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是(  )
A. B. C. D.
【解答】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.是轴对称图形,不是中心对称图形,故本选项不符合题意;
C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
2.(3分)下列现象属于平移的是(  )
A.投影仪将图片投影转换到屏幕上
B.水平运输带上砖块的运动
C.把打开的课本合上
D.卫星绕地球运动
【解答】解:A、投影仪将图片投影转换到屏幕上不属于平移,不符合题意;
B、水平运输带上砖块的运动属于平移,符合题意;
C、把打开的课本合上不属于平移,不符合题意;
D、卫星绕地球运动不属于平移,不符合题意;
故选:B.
3.(3分)如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是(  )
A.先把△ABC向左平移5个单位,再向下平移2个单位
B.先把△ABC向右平移5个单位,再向下平移2个单位
C.先把△ABC向左平移5个单位,再向上平移2个单位
D.先把△ABC向右平移5个单位,再向上平移2个单位
【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,
所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.
故选:A.
4.(3分)如图,两个全等的直角三角形重叠在一起,将Rt△ABC沿着BC的方向平移到Rt△DEF的位置,已知AB=5,DO=2,平移距离为3,则阴影部分的面积为(  )
A.12 B.24 C.21 D.20.5
【解答】解:∵△ABC沿BCC的方向平移到△DEF的位置,
∴S△ABC=S△DEF,
∴S阴影部分+S△OEC=S梯形ABEO+S△OEC,
∴S阴影部分=S梯形ABEO=×(5﹣2+5)×3=12.
故选:A.
5.(3分)一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有(  )
A.①②③ B.①②④ C.①③④ D.②③④
【解答】解:∵一个图形无论经过平移还是旋转,
∴旋转(平移)前后图形是全等形,
∴对应线段相等,对应角相等,图形的形状和大小都没有发生变化,
∴正确的有①③④.
故选:C.
6.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是(  )
A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1
【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,
∴a=﹣5,b=﹣1.
故选:D.
7.(3分)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为(  )
A.30° B.60° C.90° D.120°
【解答】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′
∠AOA′即为旋转角,
∴旋转角为90°
故选:C.
8.(3分)如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为(  )
A.6cm B.4πcm C.2πcm D.3cm
【解答】解:根据题意得:点P运动的路径长是以OA中点为圆心、半径为3cm、圆心角为120°的弧长,
∴点P运动的路径长==2π(cm),
故选:C.
9.(3分)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是(  )
A.70° B.35° C.40° D.50°
【解答】解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,
∴AC′=AC,∠B′AB=∠C′AC,
∴∠AC′C=∠ACC′,
∵CC′∥AB,
∴∠ACC′=∠CAB=70°,
∴∠AC′C=∠ACC′=70°,
∴∠CAC′=180°﹣2×70°=40°,
∴∠B′AB=40°,
故选:C.
10.(3分)如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对△ABC分别作下列变换:
①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;
②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;
③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90度.
其中,能将△ABC变换成△PQR的是(  )
A.①② B.①③ C.②③ D.①②③
【解答】解:根据题意分析可得:①②③都可以使△ABC变换成△PQR.
故选:D.
二.填空题(共8小题,3*8=24)
11.(3分)正三角形中心旋转 120 度的整倍数之后能和自己重合.
【解答】解:∵360°÷3=120°,
∴该图形绕中心至少旋转120度后能和原来的图案互相重合.
故答案为:120.
12.(3分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是 (5,1) .
【解答】解:∵将点(3,﹣2)先向右平移2个单位长度,
∴得到(5,﹣2),
∵再向上平移3个单位长度,
∴所得点的坐标是:(5,1).
故答案为:(5,1).
13.(3分)如图,下面的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为 4 cm2.
【解答】解:每个叶片的面积为4cm2,因而图形的面积是12cm2,
∵图案绕点O旋转120°后可以和自身重合,∠AOB为120°
∴图形中阴影部分的面积是图形的面积的 ,
因而图中阴影部分的面积之和为4cm2.
故答案为:4.
14.(3分)如图,根据长方形中的数据,计算阴影部分的面积为 104 .
【解答】解:两个阴影图形可以平移组成一个长方形,长为15﹣2=13,宽为8,
故阴影部分的面积=13×8=104.
15.(3分)如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为40°或20°时,△ADF是 等腰 三角形.
【解答】解:∵将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,
∴CD=CA,
当α=40°时,∠AFD=∠ACD+∠CAF=70°,
∵CD=CA,
∴∠ADC=∠CAD=70°,
∴∠ADF=∠AFD=70°,
∴AF=AD,
∴△ADF是等腰三角形,
当α=20°时,∠AFD=∠ACD+∠CAF=50°,
∵CD=CA,
∴∠ADC=∠CAD=80°,
∴∠DAF=∠DFA=50°,
∴DF=AD,
∴△ADF是等腰三角形,
故答案为等腰.
16.(3分)一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是有 ②③④ .
【解答】解:平移后对应线段平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化.
旋转后对应线段不平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化.
故答案为:②③④.
17.(3分)如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E点的坐标是 (3,﹣1) .
【解答】解:连接AA1、CC1,则交点就是对称中心E点.
观察图形知,E(3,﹣1).
18.(3分)如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为 (36,0) .
【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,
∴AB=5,
∴图③、④的直角顶点坐标为(12,0),
∵每旋转3次为一循环,
∴图⑥、⑦的直角顶点坐标为(24,0),
∴图⑨、⑩的直角顶点为(36,0).
故答案为:(36,0).
三.解答题(7小题,共66分)
19.(8分)如图,△ABC沿直线l向右移了3厘米,得△FDE,且BC=6厘米,∠B=40°.
(1)求BE;
(2)求∠FDB的度数;
(3)找出图中相等的线段(不另添加线段);
(4)找出图中互相平行的线段(不另添加线段)
【解答】解:∵△ABC沿直线l向右移了3厘米,
∴CE=BD=3cm,
∴BE=BC+CE=6+3=9厘米;
(2)∵∠FDE=∠B=40°,
∴∠FDB=140°;
(3)相等的线段有:AB=FD、AC=FE、BC=DE、BD=CE;
(4)平行的线段有:AB∥FD、AC∥FE.
20.(8分)△ABC在平面直角坐标系xOy中的位置如图所示.
(1)作△ABC关于点C成中心对称的△A1B1C1.
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
【解答】解;(1)如图所示:
(2)如图所示:
(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,
可得P点坐标为:(,0).
21.(8分)如图,△DEF是由△ABC沿箭头方向平移得到的,已知∠ACB=70°,AC=10cm,EF=6cm,CE=2cm,试求:
(1)∠DFE的大小;
(2)DF的长及A点移动的距离.
【解答】解:(1)∵△DEF是由△ABC沿箭头方向平移得到的,
∴∠DFE=∠ACB=70°;
(2)∵△DEF是由△ABC沿箭头方向平移得到的,
∴DF=AC=10cm,AD=CF,
∵CF=CE+EF=8cm,
∴AD=8cm,
∴A点移动的距离为8cm.
22.(10分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.
(1)补充完成图形;
(2)若EF∥CD,求证:∠BDC=90°.
【解答】解:(1)补全图形,如图所示;
(2)由旋转的性质得:∠DCF=90°,
∴∠DCE+∠ECF=90°,
∵∠ACB=90°,
∴∠DCE+∠BCD=90°,
∴∠ECF=∠BCD,
∵EF∥DC,
∴∠EFC+∠DCF=180°,
∴∠EFC=90°,
在△BDC和△EFC中,

∴△BDC≌△EFC(SAS),
∴∠BDC=∠EFC=90°.
23.(10分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.
(1)求证:△BDC≌△EFC;
(2)若EF∥CD,求证:∠BDC=90°.
【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,
∴∠DCE+∠ECF=90°,
∵∠ACB=90°,
∴∠BCD+∠DCE=90°,
∴∠BCD=∠ECF,
在△BDC和△EFC中,

∴△BDC≌△EFC(SAS);
(2)∵EF∥CD,
∴∠F+∠DCF=180°,
∵∠DCF=90°,
∴∠F=90°,
∵△BDC≌△EFC,
∴∠BDC=∠F=90°.
24.(10分)如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.
(1)求∠BCD的度数;
(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.
①求∠C′CB的度数;
②求证:△C′BD'≌△CAE.
【解答】解:(1)∵AC=BC,∠A=30°,
∴∠CBA=∠CAB=30°,
∵∠ADC=45°,
∴∠BCD=∠ADC﹣∠CBA=15°=∠BC'D';
(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,
∴∠CC'B=∠C'CB=75°;
②证明:∵AC=C'B,∠C'BD'=∠A,
∴∠CEB=∠C'CB﹣∠CBA=45°,
∴∠ACE=∠CEB﹣∠A=15°,
∴∠BC'D'=∠BCD=∠ACE,
在△C'BD'和△CAE中,

∴△C'BD'≌△CAE(ASA).
25.(12分)如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.
【解答】解:(1)图形平移的距离就是线段BF的长,
又∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,
∴BF=5cm,
∴平移的距离为5cm;
(2)∵∠A1FA=30°,
∴∠GFD=60°,∠D=30°,
∴∠FGD=90°,
在Rt△EFD中,ED=10cm,
∵FD=,
∴FG=cm;
(3)△AHE与△DHB1中,
∵∠FAB1=∠EDF=30°,
∴FD=FA,EF=FB=FB1,
∴FD﹣FB1=FA﹣FE,即AE=DB1,
又∵∠AHE=∠DHB1,
∴△AHE≌△DHB1(AAS),
∴AH=DH.
第1页(共3页)