北师大新版八年级(下)《第1章 三角形的证明》常考题套卷(2)
一、选择题(共10小题)
1.下列四个命题中,真命题有( )
①两条直线被第三条直线所截,内错角相等.
②如果∠1和∠2是对顶角,那么∠1=∠2.
③三角形的一个外角大于任何一个内角.
④如果x2>0,那么x>0.
A.1个 B.2个 C.3个 D.4个
2.等腰三角形的两条边长分别为9cm和12cm,则这个等腰三角形的周长是( )
A.30cm B.33cm C.24cm或21cm D.30cm或33cm
3.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6cm,DE=2cm,则BC的长为( )
A.4cm B.6cm C.8cm D.12cm
4.下列条件中,不能判定两个直角三角形全等的是( )
A.两直角边对应相等
B.斜边和一条直角边对应相等
C.两锐角对应相等
D.一个锐角和斜边对应相等
5.在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为( )
A.3 B. C.2 D.6
6.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C; ②∠AEF=∠AFE; ③∠EBC=∠C;④AG⊥EF.正确结论有( )
A.1个 B.2个 C.3个 D.4个
7.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径画弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连接AD,CB的延长线交AD于点E.下列结论错误的是( )
A.CE垂直平分AD B.CE平分∠ACD
C.△ABD是等腰三角形 D.△ACD是等边三角形
8.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设( )
A.三角形中有一个内角小于或等于60°
B.三角形中有两个内角小于或等于60°
C.三角形中有三个内角小于或等于60°
D.三角形中没有一个内角小于或等于60°
9.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若,则△A6B6A7的边长为( )
A.6 B.12 C.16 D.32
10.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正确的有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(共10小题)
11.如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于 .
12.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是 .
13.把命题“同位角相等”改写成“如果…那么…”的形式为 .
14.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,则BC的长为 cm.
15.如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是 .
16.在一个直角三角形中,已知一个锐角比另一个锐角的4倍多15°,则两个锐角分别为 .
17.用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设 .
18.在△ABC中,AB=AC,∠A=40°,则∠B= °.
19.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,AD=3,则BC= .
20.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是 秒.
三、解答题(共10小题)
21.如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.
22.如图,在△ABC中,AB=AC,D是三角形内一点,连接AD,BD,CD,∠BDC=90°,∠DBC=45°.
(1)求证:∠BAD=∠CAD;
(2)求∠ADB的度数.
23.如图,在△ABC中,AB=AC,AD⊥BC于点D.
(1)若∠C=42°,求∠BAD的度数;
(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.
24.在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF.
求证:△ABC是等腰三角形.
25.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.
(1)求∠CBE的度数;
(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE∥DF.
26.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.
27.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.
28.如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.
29.如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.
(1)求证:DE=DB;
(2)连接BE,试判断△ABE的形状,并说明理由.
30.如图,△ABC、△ADE是等边三角形,B、C、D在同一直线上.
求证:(1)CE=AC+DC;(2)∠ECD=60°.
北师大新版八年级(下)《第1章 三角形的证明》常考题套卷(2)
参考答案与试题解析
一、选择题(共10小题)
1.下列四个命题中,真命题有( )
①两条直线被第三条直线所截,内错角相等.
②如果∠1和∠2是对顶角,那么∠1=∠2.
③三角形的一个外角大于任何一个内角.
④如果x2>0,那么x>0.
A.1个 B.2个 C.3个 D.4个
【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;
如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;
三角形的一个外角大于任何一个不相邻的一个内角,所以③错误;
如果x2>0,那么x≠0,所以④错误.
故选:A.
2.等腰三角形的两条边长分别为9cm和12cm,则这个等腰三角形的周长是( )
A.30cm B.33cm C.24cm或21cm D.30cm或33cm
【解答】解:①当9为腰时,9+9>12,故此三角形的周长=9+9+12=30;
②当12为腰时,9+12>12,故此三角形的周长=9+12+12=33.
故选:D.
3.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6cm,DE=2cm,则BC的长为( )
A.4cm B.6cm C.8cm D.12cm
【解答】解:延长ED交BC于M,延长AD交BC于N,
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM为等边三角形,
∵BE=6cm,DE=2cm,
∴DM=4cm,
∵△BEM为等边三角形,
∴∠EMB=60°,
∵AN⊥BC,
∴∠DNM=90°,
∴∠NDM=30°,
∴NM=2cm,
∴BN=4cm,
∴BC=2BN=8cm.
故选:C.
4.下列条件中,不能判定两个直角三角形全等的是( )
A.两直角边对应相等
B.斜边和一条直角边对应相等
C.两锐角对应相等
D.一个锐角和斜边对应相等
【解答】解:A、正确.根据SAS即可判断.
B、正确.根据HL即可判断.
C、错误.两锐角对应相等不能判断两个三角形全等.
D.正确.根据AAS即可判断.
5.在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为( )
A.3 B. C.2 D.6
【解答】解:∵∠B=90°,
∴DB⊥AB,
又∵AD平分∠BAC,DE⊥AC,
∴DE=BD=3,
故选:A.
6.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C; ②∠AEF=∠AFE; ③∠EBC=∠C;④AG⊥EF.正确结论有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵∠BAC=90°,AD⊥BC,
∴∠C+∠ABC=90°,
∠BAD+∠ABC=90°,
∴∠BAD=∠C,故①正确;
∵BE是∠ABC的平分线,
∴∠ABE=∠CBE,
∵∠ABE+∠AEF=90°,
∠CBE+∠BFD=90°,
∴∠AEF=∠BFD,
又∵∠AFE=∠BFD(对顶角相等),
∴∠AEF=∠AFE,故②正确;
∵∠ABE=∠CBE,
∴只有∠C=30°时∠EBC=∠C,故③错误;
∵∠AEF=∠AFE,
∴AE=AF,
∵AG平分∠DAC,
∴AG⊥EF,故④正确.
综上所述,正确的结论是①②④.
故选:C.
7.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径画弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连接AD,CB的延长线交AD于点E.下列结论错误的是( )
A.CE垂直平分AD B.CE平分∠ACD
C.△ABD是等腰三角形 D.△ACD是等边三角形
【解答】解:由题可得,CA=CD,BA=BD,
∴CB是AD的垂直平分线,
即CE垂直平分AD,故A选项正确;
∴∠CAD=∠CDA,∠CEA=∠CED,
∴∠ACE=∠DCE,
即CE平分∠ACD,故B选项正确;
∵DB=AB,
∴△ABD是等腰三角形,故C选项正确;
∵AD与AC不一定相等,
∴△ACD不一定是等边三角形,故D选项错误;
故选:D.
8.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设( )
A.三角形中有一个内角小于或等于60°
B.三角形中有两个内角小于或等于60°
C.三角形中有三个内角小于或等于60°
D.三角形中没有一个内角小于或等于60°
【解答】解:用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时,
第一步应先假设三角形中没有一个内角小于或等于60°,
故选:D.
9.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若,则△A6B6A7的边长为( )
A.6 B.12 C.16 D.32
【解答】解:∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=,
∴A2B1=,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=2,
A4B4=8B1A2=4,
A5B5=16B1A2=8,
…
∴△AnBnAn+1的边长为×2n﹣1,
∴△A6B6A7的边长为×26﹣1=×25=16.
故选:C.
10.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正确的有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵PA平分∠CAB,PB平分∠CBE,
∴∠PAB=∠CAB,∠PBE=∠CBE,
∵∠CBE=∠CAB+∠ACB,
∠PBE=∠PAB+∠APB,
∴∠ACB=2∠APB;故①正确;
过P作PM⊥AB于M,PN⊥AC于N,PS⊥BC于S,
∴PM=PN=PS,
∴PC平分∠BCD,
∵S△PAC:S△PAB=(AC PN):(AB PM)=AC:AB;故②正确;
∵BE=BC,BP平分∠CBE
∴BP垂直平分CE(三线合一),故③正确;
∵PG∥AD,
∴∠FPC=∠DCP
∵PC平分∠DCB,
∴∠DCP=∠PCF,
∴∠PCF=∠CPF,故④正确.
故选:D.
二、填空题(共10小题)
11.如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于 3cm .
【解答】解:∵BI、CI分别平分∠ABC、∠ACF,
∴∠ABI=∠CBI,∠ECI=∠ICF,
∵DE∥BC,
∴∠DIB=∠CBI,∠EIC=∠ICF,
∴∠ABI=∠DIB,∠ECI=∠EIC,
∴DI=BD=8cm,EI=CE=5cm,
∴DE=DI﹣EI=3(cm).
故答案为:3cm.
12.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是 3 .
【解答】解:如图,过点D作DF⊥AC于F,
∵AD是△ABC中∠BAC的角平分线,DE⊥AB,
∴DE=DF,
由图可知,S△ABC=S△ABD+S△ACD,
×4×2+×AC×2=7,
解得AC=3.
故答案为3.
13.把命题“同位角相等”改写成“如果…那么…”的形式为 如果两个角是同位角,那么这两个角相等 .
【解答】解:命题“同位角相等”改写成“如果…那么…”的形式为:如果两个角是同位角,那么这两个角相等.
故答案为如果两个角是同位角,那么这两个角相等.
14.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,则BC的长为 7 cm.
【解答】解:∵AB的垂直平分线交AB于E,交BC于D,
∴AD=BD,
∵△ADC的周长为11cm,
∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,
∵AC=4cm,
∴BC=7cm.
故答案为:7.
15.如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是 13cm .
【解答】解:∵DE∥AB,BD平分∠ABC,
∴∠EBD=∠ABD=∠EDB,
∴DE=BE=5cm,
∵AB=AC,DE∥AB,
∴∠C=∠ABE=∠DEC,
∴DC=DE=5cm,且CE=3cm,
∴DE+EC+CD=5cm+3cm+5cm=13cm,
即△CDE的周长为13cm,
故答案为:13cm.
16.在一个直角三角形中,已知一个锐角比另一个锐角的4倍多15°,则两个锐角分别为 75°、15° .
【解答】解:设另一个锐角是x,则这个锐角是4x+15°,
根据题意得,x+4x+15°=90°,
解得x=15°,
4x+15°=4×15°+15°=75°,
所以,这两个锐角分别为75°、15°.
故答案为:75°、15°.
17.用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设 一个三角形中有两个角是直角 .
【解答】解:用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设一个三角形中有两个角是直角.
故答案为:一个三角形中有两个角是直角.
18.在△ABC中,AB=AC,∠A=40°,则∠B= 70 °.
【解答】解:∵AB=AC,
∴∠B=∠C,
∵∠A+∠B+∠C=180°,
∴∠B=(180°﹣40°)=70°.
故答案为70.
19.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,AD=3,则BC= 9 .
【解答】解:∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵AD⊥AC,
∴∠DAC=90°,又∠C=30°,
∴CD=2AD=6,
∵∠BAC=120°,∠DAC=90°,
∴∠BAD=30°,
∴∠DAB=∠B,
∴BD=AD=3,
∴BC=BD+CD=9,
故答案为:9.
20.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是 4 秒.
【解答】解:设运动的时间为x,
在△ABC中,AB=20cm,AC=12cm,
点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,
当△APQ是等腰三角形时,AP=AQ,
AP=20﹣3x,AQ=2x
即20﹣3x=2x,
解得x=4.
故答案为:4.
三、解答题(共10小题)
21.如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.
【解答】解:延长AD、BC交于E,
∵∠A=30°,∠B=90°,
∴∠E=60°,
∵∠ADC=120°,
∴∠EDC=60°,
∴△EDC是等边三角形,
设CD=CE=DE=x,
∵AD=4,BC=1,
∴2(1+x)=x+4,
解得;x=2,
∴CD=2.
22.如图,在△ABC中,AB=AC,D是三角形内一点,连接AD,BD,CD,∠BDC=90°,∠DBC=45°.
(1)求证:∠BAD=∠CAD;
(2)求∠ADB的度数.
【解答】(1)证明:∵∠BDC=90°,∠DBC=45°,
∴∠BCD=180°﹣∠BDC﹣∠DBC=45°,
∴∠DBC=∠BCD,
∴DB=DC.
在△ABD与△ACD中,
,
∴△ABD≌△ACD(SSS),
∴∠BAD=∠CAD;
(2)解:∵△ABD≌△ACD(SSS),
∴∠ADB=∠ADC,
∵∠ADB+∠ADC+∠BDC=360°,∠BDC=90°,
∴∠ADB=(360°﹣90°)=135°.
23.如图,在△ABC中,AB=AC,AD⊥BC于点D.
(1)若∠C=42°,求∠BAD的度数;
(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.
【解答】解:(1)∵AB=AC,AD⊥BC于点D,
∴∠BAD=∠CAD,∠ADC=90°,
又∠C=42°,
∴∠BAD=∠CAD=90°﹣42°=48°;
(2)∵AB=AC,AD⊥BC于点D,
∴∠BAD=∠CAD,
∵EF∥AC,
∴∠F=∠CAD,
∴∠BAD=∠F,
∴AE=FE.
24.在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF.
求证:△ABC是等腰三角形.
【解答】证明:∵D是BC的中点,
∴BD=CD,
∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵BD=CD,DE=DF,
∴Rt△BDE≌Rt△CDF(HL),
∴∠B=∠C,
∴AB=AC,
∴△ABC是等腰三角形.
25.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.
(1)求∠CBE的度数;
(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE∥DF.
【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=36°,
∴∠ABC=90°﹣∠A=54°,
∴∠CBD=126°.
∵BE是∠CBD的平分线,
∴∠CBE=∠CBD=63°;
(2)∵∠ACB=90°,∠CBE=63°,
∴∠CEB=90°﹣63°=27°.
又∵∠F=27°,
∴∠F=∠CEB=27°,
∴DF∥BE
26.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.
【解答】证明:∵AB⊥CF,DE⊥CF,
∴∠ABC=∠DEF=90°.
在Rt△ABC和Rt△DEF中,
,
∴Rt△ABC≌Rt△DEF(HL).
∴BC=EF.
∴BC﹣BE=EF﹣BE.
即:CE=BF.
27.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.
【解答】已知:∠1=∠2,∠B=∠C
求证:∠A=∠D
证明:∵∠1=∠3
又∵∠1=∠2
∴∠3=∠2
∴EC∥BF
∴∠AEC=∠B
又∵∠B=∠C
∴∠AEC=∠C
∴AB∥CD
∴∠A=∠D
28.如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.
【解答】解:(1)∵△ABC和△CDE均为等边三角形
∴AC=BC,EC=DC
∠ACB=∠ECD=60°
∴∠ACD=∠ECB
∴△ACD≌△BCE
∴AD=BE;
(2)∵△ACD≌△BCE
∴∠CBH=∠CAG
∵∠ACB=∠ECD=60°,点B、C、D在同一条直线上
∴∠ACB=∠ECD=∠ACG=60°
又∵AC=BC
∴△ACG≌△BCH;
(3)△CGH是等边三角形,理由如下:
∵△ACG≌△BCH
∴CG=CH(全等三角形的对应边相等)
又∵∠ACG=60°
∴△CGH是等边三角形(有一内角为60度的等腰三角形为等边三角形);
29.如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.
(1)求证:DE=DB;
(2)连接BE,试判断△ABE的形状,并说明理由.
【解答】(1)证明:∵∠ACB=90°,∠ABC=30°,
∴BC⊥AE,∠CAB=60°,
∵AD平分∠CAB,
∴∠DAB=∠CAB=30°=∠ABC,
∴DA=DB,
∵CE=AC,
∴BC是线段AE的垂直平分线,
∴DE=DA,
∴DE=DB;
(2)△ABE是等边三角形;理由如下:
连接BE,如图:
∵BC是线段AE的垂直平分线,
∴BA=BE,
即△ABE是等腰三角形,
又∵∠CAB=60°,
∴△ABE是等边三角形.
30.如图,△ABC、△ADE是等边三角形,B、C、D在同一直线上.
求证:(1)CE=AC+DC;(2)∠ECD=60°.
【解答】证明:(1)∵△ABC、△ADE是等边三角形,
∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即:∠BAD=∠CAE,
∴△BAD≌△CAE,
∴BD=EC,
∵BD=BC+CD=AC+CD,
∴CE=BD=AC+CD;
(2)由(1)知:△BAD≌△CAE,
∴∠ACE=∠ABD=60°,
∴∠ECD=180°﹣∠ACB﹣∠ACE=60°,
∴∠ECD=60°.
第1页(共3页)