北师大新版八年级(下)《第1章 三角形的证明》常考题套卷(3)
一、选择题(共10小题)
1.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设( )
A.直角三角形的每个锐角都小于45°
B.直角三角形有一个锐角大于45°
C.直角三角形的每个锐角都大于45°
D.直角三角形有一个锐角小于45°
2.如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A、B两点望灯塔C,测得∠NAC=42°,∠NBC=84°,则B处到灯塔C的距离为( )
A.15海里 B.20海里 C.30海里 D.求不出来
3.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=( )
A.12 B.8 C.4 D.3
4.在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是( )
A.△ABE≌△ACF B.点D在∠BAC的平分线上
C.△BDF≌△CDE D.点D是BE的中点
5.如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )
A.50° B.60° C.70° D.80°
6.如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出( )
A.7个 B.6个 C.4个 D.3个
7.有一直角三角板,30°角所对直角边长是6cm,则斜边的长是( )
A.3cm B.6cm C.10cm D.12cm
8.下列命题中,逆命题为真命题的是( )
A.菱形的对角线互相垂直
B.矩形的对角线相等
C.平行四边形的对角线互相平分
D.正方形的对角线垂直且相等
9.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为( )
A.20° B.30° C.40° D.50°
10.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )
A.1 B.6 C.3 D.12
二、填空题(共10小题)
11.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为 .
12.已知△ABC中,AB=AC=4,∠A=60度,则△ABC的周长为 .
13.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为 .
14.把命题“等角的余角相等”写成“如果…,那么….”的形式为 .
15.如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC= cm.
16.等腰三角形一边长为8,另一边长为5,则此三角形的周长为 .
17.如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC= °.
18.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周长=AB+AC;④BF=CF.其中正确的是 (填序号).
19.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D点,若BD=1,则AD= .
20.在直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为 .
三、解答题(共10小题)
21.如图,在△ABC中,AC<AB<BC.
(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.
(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.
22.如图,在△ABC中,AB=AC,作AB边的垂直平分线交直线BC于M,交AB于点N.
(1)如图(1),若∠A=40°,则∠NMB= 度;
(2)如图(2),若∠A=70°,则∠NMB= 度;
(3)如图(3),若∠A=120°,则∠NMB= 度;
(4)由(1)(2)(3)问,你能发现∠NMB与∠A有什么关系?写出猜想,并证明.
23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.
(1)求证:CF=EB;
(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.
24.如图,在△ABC中,AE是∠BAC的角平分线,交BC于点E,DE∥AB交AC于点D.
(1)求证AD=ED;
(2)若AC=AB,DE=3,求AC的长.
25.已知:如图,在△ABC中,AB=BC,∠ABC=120°,BE⊥AC于点D,且DE=DB,试判断△CEB的形状,并说明理由.
26.如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
求证:Rt△ABE≌Rt△CBF.
27.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,
(1)求∠F的度数;
(2)若CD=3,求DF的长.
28.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,
求证:BC=3AD.
29.如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:△ABC为等腰三角形.
30.已知:如图,在Rt△ABC中,∠BAC=90°,D是BC延长线上一点,AD=AB,求证:∠BAD=2∠ACB.
北师大新版八年级(下)《第1章 三角形的证明》常考题套卷(3)
参考答案与试题解析
一、选择题(共10小题)
1.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设( )
A.直角三角形的每个锐角都小于45°
B.直角三角形有一个锐角大于45°
C.直角三角形的每个锐角都大于45°
D.直角三角形有一个锐角小于45°
【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.
故选:A.
2.如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A、B两点望灯塔C,测得∠NAC=42°,∠NBC=84°,则B处到灯塔C的距离为( )
A.15海里 B.20海里 C.30海里 D.求不出来
【解答】解:根据题意得:AB=2×15=30(海里),
∵∠NAC=42°,∠NBC=84°,
∴∠C=∠NBC﹣∠NAC=42°,
∴∠C=∠NAC,
∴BC=AB=30海里.
即从海岛B到灯塔C的距离是30海里.
故选:C.
3.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=( )
A.12 B.8 C.4 D.3
【解答】解:延长EP、FP分别交AB、BC于G、H,
则由PD∥AB,PE∥BC,PF∥AC,可得,
四边形PGBD,EPHC是平行四边形,
∴PG=BD,PE=HC,
又△ABC是等边三角形,
又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
∴PF=PG=BD,PD=DH,
又△ABC的周长为12,
∴PD+PE+PF=DH+HC+BD=BC=×12=4,
故选:C.
4.在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是( )
A.△ABE≌△ACF B.点D在∠BAC的平分线上
C.△BDF≌△CDE D.点D是BE的中点
【解答】解:A、∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;
B、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;
C、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确;
D、无法判定,错误,
故选:D.
5.如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )
A.50° B.60° C.70° D.80°
【解答】解:在△ABC中,∵∠B=50°,∠C=30°,
∴∠BAC=180°﹣∠B﹣∠C=100°,
由作图可知MN为AC的中垂线,
∴DA=DC,
∴∠DAC=∠C=30°,
∴∠BAD=∠BAC﹣∠DAC=70°,
故选:C.
6.如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出( )
A.7个 B.6个 C.4个 D.3个
【解答】解:如图所示,分别以A、B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C3、C4、C5、C6、C7即为第三个顶点的位置;作线段AB的垂直平分线,垂直平分线未经过网格中的格点.
故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个.
故选:A.
7.有一直角三角板,30°角所对直角边长是6cm,则斜边的长是( )
A.3cm B.6cm C.10cm D.12cm
【解答】解:∵直角三角形中30°角所对的直角边为4cm,
∴斜边长为12cm.
故选:D.
8.下列命题中,逆命题为真命题的是( )
A.菱形的对角线互相垂直
B.矩形的对角线相等
C.平行四边形的对角线互相平分
D.正方形的对角线垂直且相等
【解答】解:A、菱形的对角线互相垂直的逆命题是对角线互相垂直的四边形是菱形,是假命题;
B、矩形的对角线相等的逆命题是对角线相等的四边形是矩形,是假命题;
C、平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题;
D、正方形的对角线垂直且相等的逆命题是对角线垂直且相等的四边形是正方形,是假命题;
故选:C.
9.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为( )
A.20° B.30° C.40° D.50°
【解答】解:∵BD平分∠ABC,
∴∠ABD=∠DBC=20°,
∴∠ABC=40°,
∵∠ACB=90°,
∴∠A=90°﹣∠ABC=90°﹣40°=50°,
∵CD∥AB,
∴∠ACD=∠A=50°,
故选:D.
10.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )
A.1 B.6 C.3 D.12
【解答】解:过点D作DH⊥BC交BC于点H,如图所示:
∵BD⊥CD,
∴∠BDC=90°,
又∵∠C+∠BDC+∠DBC=180°,
∠ADB+∠A+∠ABD=180°
∠ADB=∠C,∠A=90°,
∴∠ABD=∠CBD,
∴BD是∠ABC的角平分线,
又∵AD⊥AB,DH⊥BC,
∴AD=DH,
又∵AD=3,
∴DH=3,
又∴点D是直线BC外一点,
∴当点P在BC上运动时,点P运动到与点H重合时DP最短,其长度为DH长等于3,
即DP长的最小值为3.
故选:C.
二、填空题(共10小题)
11.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为 40°或140° .
【解答】解:①当为锐角三角形时,如图1,
∵∠ABD=50°,BD⊥AC,
∴∠A=90°﹣50°=40°,
∴三角形的顶角为40°;
②当为钝角三角形时,如图2,
∵∠ABD=50°,BD⊥AC,
∴∠BAD=90°﹣50°=40°,
∵∠BAD+∠BAC=180°,
∴∠BAC=140°
∴三角形的顶角为140°,
故答案为40°或140°.
12.已知△ABC中,AB=AC=4,∠A=60度,则△ABC的周长为 12 .
【解答】解:∵AB=AC=4,∠A=60°,
∴△ABC是等边三角形,
∴BC=AB=AC=4,
∴△ABC的周长为12.
故答案为12.
13.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为 4cm .
【解答】解:∵BC=10cm,BD:DC=3:2,
∴DC=4cm,
∵AD是△ABC的角平分线,∠ACB=90°,
∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.
故答案为4cm.
14.把命题“等角的余角相等”写成“如果…,那么….”的形式为 如果两个角相等,那么这两个角的余角相等 .
【解答】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角相等,那么这两个角的余角相等.
故答案为:如果两个角相等角,那么这两个角的余角相等.
15.如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC= 10 cm.
【解答】解:∵C△DBC=24cm,
∴BD+DC+BC=24cm①,
又∵MN垂直平分AB,
∴AD=BD②,
将②代入①得:AD+DC+BC=24cm,
即AC+BC=24cm,
又∵AC=14cm,
∴BC=24﹣14=10cm.
故填10.
16.等腰三角形一边长为8,另一边长为5,则此三角形的周长为 18或21 .
【解答】解:当8为腰,5为底时;8﹣5<8<8+5,能构成三角形,此时周长=8+8+5=21;
当8为底,5为腰时;8﹣5<5<8+5,能构成三角形,此时周长=5+5+8=18;
故答案为18或21.
17.如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC= 15 °.
【解答】解:∵AD是等边△ABC的中线,
∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,
∴∠ADC=90°,
∵AD=AE,
∴∠ADE=∠AED==75°,
∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.
故答案为:15.
18.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周长=AB+AC;④BF=CF.其中正确的是 ①②③ (填序号).
【解答】解:∵DE∥BC,
∴∠DFB=∠FBC,∠EFC=∠FCB,
∵BF是∠ABC的平分线,CF是∠ACB的平分线,
∴∠FBC=∠DFB,∠FCE=∠FCB,
∵∠DBF=∠DFB,∠EFC=∠ECF,
∴△DFB,△FEC都是等腰三角形.
∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,
∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.
综上所述,命题①②③正确.
故答案为①②③.
19.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D点,若BD=1,则AD= 3 .
【解答】解:∵∠ACB=90°,CD⊥AB,
∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,
∴∠BCD=∠A=30°,
∵BD=1,
∴BC=2BD=2,AB=2BC=2×2=4,
∴AD=AB﹣BD=4﹣1=3.
故答案为:3.
20.在直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为 65°,25° .
【解答】解:设这两个锐角的度数分别为x,y,
根据题意得,,
解得.
故答案为:65°,25°.
三、解答题(共10小题)
21.如图,在△ABC中,AC<AB<BC.
(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.
(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.
【解答】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,
∴PA=PB,
∴∠B=∠BAP,
∵∠APC=∠B+∠BAP,
∴∠APC=2∠B;
(2)根据题意可知BA=BQ,
∴∠BAQ=∠BQA,
∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,
∴∠BQA=2∠B,
∵∠BAQ+∠BQA+∠B=180°,
∴5∠B=180°,
∴∠B=36°.
22.如图,在△ABC中,AB=AC,作AB边的垂直平分线交直线BC于M,交AB于点N.
(1)如图(1),若∠A=40°,则∠NMB= 20 度;
(2)如图(2),若∠A=70°,则∠NMB= 35 度;
(3)如图(3),若∠A=120°,则∠NMB= 60 度;
(4)由(1)(2)(3)问,你能发现∠NMB与∠A有什么关系?写出猜想,并证明.
【解答】解:(1)如图1中,∵AB=AC,
∴∠B=∠ACB=(180°﹣40°)=70°,
∵MN⊥AB,
∴∠MNB=90°,
∴∠NMB=20°,
故答案为20.
(2)如图2中,∵AB=AC,
∴∠B=∠ACB=(180°﹣70°)=55°,
∵MN⊥AB,
∴∠MNB=90°,
∴∠NMB=35°,
故答案为35.
(3)如图3中,
如图1中,∵AB=AC,
∴∠B=∠ACB=(180°﹣120°)=30°,
∵MN⊥AB,
∴∠MNB=90°,
∴∠NMB=60°,
故答案为60.
(4)结论:∠NMB=∠A.
理由:如图1中,∵AB=AC,
∴∠B=∠ACB=(180°﹣∠A)
∵MN⊥AB,
∴∠MNB=90°,
∴∠NMB=90°﹣(90°﹣∠A)=∠A.
23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.
(1)求证:CF=EB;
(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.
【解答】(1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,
∴DC=DE,
在Rt△FCD和Rt△BED中,
,
∴Rt△FCD≌Rt△BED(HL),
∴CF=EB;
(2)解:AB=AF+2BE,
理由如下:在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
∴AB=AE+BE=AF+FC+BE=AF+2BE.
24.如图,在△ABC中,AE是∠BAC的角平分线,交BC于点E,DE∥AB交AC于点D.
(1)求证AD=ED;
(2)若AC=AB,DE=3,求AC的长.
【解答】证明:(1)∵AE是∠BAC的角平分线
∴∠DAE=∠BAE
∵DE∥AB
∴∠DEA=∠EAB
∴∠DAE=∠DEA
∴AD=DE
(2)∵AB=AC,AE是∠BAC的角平分线
∴AE⊥BC
∴∠C+∠CAE=90°,∠CED+∠DEA=90°
∴∠C=∠CED
∴DE=CD且DE=3
∴AD=DE=CD=3
∴AC=6
25.已知:如图,在△ABC中,AB=BC,∠ABC=120°,BE⊥AC于点D,且DE=DB,试判断△CEB的形状,并说明理由.
【解答】解:△CEB是等边三角形.
证明:∵AB=BC,∠ABC=120°,BE⊥AC,
∴∠CBE=∠ABE=60°.
又∵DE=DB,BE⊥AC,
∴CB=CE.
∴△CEB是等边三角形.
26.如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
求证:Rt△ABE≌Rt△CBF.
【解答】证明:在Rt△ABE和Rt△CBF中,
∵,
∴Rt△ABE≌Rt△CBF(HL).
27.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,
(1)求∠F的度数;
(2)若CD=3,求DF的长.
【解答】解:(1)∵△ABC是等边三角形,
∴∠B=60°,
∵DE∥AB,
∴∠EDC=∠B=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°﹣∠EDC=30°;
(2)∵∠ACB=60°,∠EDC=60°,
∴△EDC是等边三角形.
∴ED=DC=3,
∵∠DEF=90°,∠F=30°,
∴DF=2DE=6.
28.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,
求证:BC=3AD.
【解答】证明:在△ABC中,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
又∵AD⊥AC,
∴∠DAC=90°,
∵∠C=30°
∴CD=2AD,∠BAD=∠B=30°,
∴AD=DB,
∴BC=CD+BD=AD+DC=AD+2AD=3AD.
29.如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:△ABC为等腰三角形.
【解答】证明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°.
在Rt△BDE和Rt△CDF中,
∴Rt△BDE≌Rt△CDF(HL),
∴∠EBD=∠FCD,
∵BD=CD,
∴∠DBC=∠DCB,
∴∠DBC+∠EBD=∠DCB+∠FCD,
即∠ABC=∠ACB,
∴AB=AC.
30.已知:如图,在Rt△ABC中,∠BAC=90°,D是BC延长线上一点,AD=AB,求证:∠BAD=2∠ACB.
【解答】证明:∵AD=AB,
∴∠B=∠D,
设∠B=∠D=α,
∴∠BAD=180°﹣∠B﹣∠D=180°﹣2α=2(90°﹣α),
∵∠BAC=90°,
∴∠ACB=90°﹣∠B=90°﹣α,
∴∠BAD=2∠ACB.
第1页(共3页)