必修第二册 10.3 频率与概率 同步练习
一、单选题
1.我国古代数学名著《数书九章》是南宋数学家秦九韶所著数学著作,书中共列算题81问,分为9类.全书采用问题集的形式,并不按数学方法来分类.题文也不只谈数学,还涉及自然现象和社会生活,成为了解当时社会政治和经济生活的重要参考文献.《数书九章》中有“米谷粒分”一题,现有类似的题:粮仓开仓收粮,粮农送来米1634石,验得米夹谷,抽样取米一把,数得254粒夹谷25粒,则这批米内夹谷约为( )
A.158石 B.159石 C.160石 D.161石
2.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是
A. B. C. D.
3.有下列说法正确的是( )
①频数和频率都能反映一个对象在试验总次数中出现的频繁程度;
②在同一次试验中,每个试验结果出现的频数之和等于试验的样本总数;
③在同一次试验中,每个试验结果出现的频率之和不一定等于1;
④概率就是频率.
A.①③ B.①②④ C.①② D.③④
4.在进行n次反复试验中,事件A发生的频率为,当n很大时,事件A发生的概率与的关系是( )
A. B.
C. D.
5.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:
满意情况 不满意 比较满意 满意 非常满意
人数 200 2100 1000
根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是A. B. C. D.
6.从只读过《论语》的3名同学和只读过《红楼梦》的3名同学中任选2人在班内进行读后分享,则选中的2人都读过《红楼梦》的概率为( )
A. B. C. D.
7.如图,某系统由A,B,C,D四个零件组成,若每个零件是否正常工作互不影响,且零件A,B,C,D正常工作的概率都为,则该系统正常工作的概率为( )
A. B.
C. D.
8.关于频率和概率,下列说法正确的是( )
①某同学在罚球线投篮三次,命中两次,则该同学每次投篮的命中率为;
②数学家皮尔逊曾经做过两次试验,抛掷12000次硬币,得到正面向上的频率为0.5016;抛掷24000次硬币,得到正面向上的频率为0.5005.如果他抛掷36000次硬币,正面向上的频率可能大于0.5005;
③某类种子发芽的概率为0.903,当我们抽取2000粒种子试种,一定会有1806粒种子发芽;
④将一个均匀的骰子抛掷6000次,则出现点数大于2的次数大约为4000次.
A.②④ B.①④ C.①② D.②③
9.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是
A. B. C. D.
10.下列说法错误的是( )
A.任一事件的概率总在内 B.不可能事件的概率一定为0
C.必然事件的概率一定为1 D.概率是随机的,在试验前不能确定
11.从2016年1月1日起,“全面二孩”政策在全国范围内实施,许多年轻夫妇都积极地响应国家号召,在六年内生育了二胎,因此在有两个孩子的每户家庭中,若按孩子的性别来进行分类,共会出现三类家庭,分别为:“两个男孩型”家庭,“一男一女孩型”家庭,“两个女孩型”家庭.市消费者协会为了解有两个孩子家庭的某些日常生活消费指数,从该市有两个孩子(假设每胎只生一个小孩,科学研究证明每胎生男生女机会均等)的家庭中随机地抽取户进行调查统计,则估计其中是“一男一女孩型”家庭的户数为( )
A. B. C. D.
12.甲、乙两人做游戏,下列游戏中不公平的是( )
A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜
B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜
C.从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜
D.甲、乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜
二、填空题
13.某购物网站开展一种商品的预约购买,规定每个手机号只能预约一次,预约后通过摇号的方式决定能否成功购买到该商品.规则如下:(ⅰ)摇号的初始中签率为;(ⅱ)当中签率不超过时,可借助“好友助力”活动增加中签率,每邀请到一位好友参与“好友助力”活动可使中签率增加.为了使中签率超过,则至少需要邀请________位好友参与到“好友助力”活动.
14.对一批产品的长度(单位:mm)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间内的为一等品,在区间或内的为二等品,在区间或内的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则该件产品为二等品的概率为____________.
15.在一个大转盘上,盘面被均匀地分成12份,分别写有1~12这12个数字,其中2,4,6,8,10,12这6个区域对应的奖品是文具盒,而1,3,5,7,9,11这6个区域对应的奖品是随身听.游戏规则是转盘转动后指针停在哪一格,则继续向前前进相应的格数.例如:你转动转盘停止后,指针落在4所在区域,则还要往前前进4格,到标有8的区域,此时8区域对应的奖品就是你的,依此类推.请问:小明在玩这个游戏时,得到的奖品是随身听的概率是_________.
16.已知某厂的产品合格率是95% ,从该厂抽出20件产品进行检查,其中合格产品的件数最有可能是________.
17.设有外形完全相同的两个箱子,甲箱中有99个白球,1个黑球,乙箱中有1个白球,99个黑球.随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球,我们可以认为这球是从_____箱中取出的.
三、解答题
18.某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在的学生人数为6.
(1)求直方图中的值;
(2)求的值;
(3)试根据样本估计“该校高一学生期末数学考试成绩70”的概率.
19.某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.
(1)求图中的值;
(2)求这组数据的平均数和中位数;
(3)已知满意度评分值在内的男生数与女生数的比为3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.
20.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工项目 A B C D E F
子女教育 ○ ○ × ○ × ○
继续教育 × × ○ × ○ ○
大病医疗 × × × ○ × ×
住房贷款利息 ○ ○ × × ○ ○
住房租金 × × ○ × × ×
赡养老人 ○ ○ × × × ○
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.
21.某班倡议假期每位学生每天至少锻炼一小时.为了解学生的锻炼情况,对该班全部34名学生在某周的锻炼时间进行了调查,调查结果如下表:
锻炼时长(小时) 5 6 7 8 9
男生人数(人) 1 2 4 3 4
女生人数(人) 3 8 6 2 1
(Ⅰ)试根据上述数据,求这个班级女生在该周的平均锻炼时长;
(Ⅱ)若从锻炼8小时的学生中任选2人参加一项活动,求选到男生和女生各1人的概率;
(Ⅲ)试判断该班男生锻炼时长的方差与女生锻炼时长的方差的大小.(直接写出结果)
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.D
利用抽取的米夹谷的频率估计总体的频率计算.
【详解】
由题意可知这批米内夹谷约为(石).
故选:D.
本题考查简单随机抽样,用样本频率估计总体,属于基础题.
2.D
男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.
【详解】
两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是.故选D.
本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.
3.C
根据统频数和频率的关系,以及频率和概率的关系,进行判断即可得解.
【详解】
由频率 频数 概率的定义易知①②正确.
故选:C.
4.A
当n很大时,频率是概率的近似值,从而可得答案
【详解】
在进行n次反复试验中,事件A发生的频率为,当n很大时,越来越接近于,
所以可以用近似的代替,即,
故选:A
5.C
由题意得,,随机调查的消费者中对网上购物“比较满意”或“满意”的总人数为,所以随机调查的消费者中对网上购物“比较满意”或“满意”的频率为,即可求得答案.
【详解】
由题意得,,
随机调查的消费者中对网上购物“比较满意”或“满意”的总人数为,
随机调查的消费者中对网上购物“比较满意”或“满意”的频率为.
由此估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率为.
故选:C
本题考查了用频率估计概率,解题关键是频率和概率的定义,考查了分析能力和计算能力,属于基础题.
6.A
利用列举法,求得基本事件的总数,再求得选中的2人都读过《红楼梦》所含的基本事件个数,利用古典概型及其概率的计算公式,即可求解.
【详解】
将只读过《论语》的3名同学分别记为,,,只读过《红楼梦》的3名同学分别记为,,.
设“选中的2人都读过《红楼梦》”为事件,则从6名同学中任选2人的所有可能情况有,,,,,,,,,,,,,,共15种,
其中事件包含的可能情况有,,共3种,故.
故选:A.
本题主要考查了古典概型及其概率的计算,着重考查了推理与运算能力,属于基础题.
7.C
要使系统正常工作,则A、B要都正常或者C正常,D必须正常,然后利用独立事件,对立事件概率公式计算.
【详解】
记零件或系统能正常工作的概率为,
该系统正常工作的概率为:
,
故选:C.
8.A
根据频率和概率的定义对各个选项进行判断即可.
【详解】
①某同学投篮三次,命中两次,只能说明在这次投篮中命中的频率为,不能说概率,故错误;
②进行大量的实验,硬币正面向上的频率在0.5附近摆动,可能大于0.5,也可能小于0.5,故正确;
③只能说明可能有1806粒种子发芽,具有随机性,并不是一定有1806粒种子发芽,故错误;
④出现点数大于2的次数大约为4000次,正确.
故选:A
本题考查频率与概率的区别,属于基础题.
9.C
【详解】
分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.
详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.
点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.
10.D
结合概率的定义和性质一一判断选项即可.
【详解】
解:任一事件的概率总在内,不可能事件的概率为0,必然事件的概率为1,概率是客观存在的,是一个确定值.
故选:D.
本题主要考查概率的定义与性质,属于基础题.
11.C
根据题意把二胎的所有种类数枚举出来,找出其中“一男一女孩型”所占比例,即可求出抽取的600户中有多少这种类型家庭.
【详解】
因每胎生男女概率相等,则所有的两孩种类有,①第一胎男孩,第二胎男孩;②第一胎男孩,第二胎女孩;③第一胎女孩,第二胎男孩;④第一胎女孩,第二胎女孩;
故“一男一女孩型”所占概率为,则600户中有“一男一女孩型”.
故选:C.
12.B
运用古典概型的概率计算公式,分别计算A,B,C,D中的概率,结合题意,即可得到所求结论.
【详解】
解:A项,P(点数为奇数)=P(点数为偶数)=;
B项,P(点数之和大于7)=,P(点数之和小于等于7)=;
C项,P(牌色为红)=P(牌色为黑)=;
D项,P(同奇或同偶)=P(奇偶不同)=.
故选:B.
13.
先求出需要增加中签率为0.71,再用0.71除以0.05得14.2,取15即可得到答案.
【详解】
因为摇号的初始中签率为,所以要使中签率超过,需要增加中签率,
因为每邀请到一位好友参与“好友助力”活动可使中签率增加,
所以至少需要邀请,所以至少需要邀请15位好友参与到“好友助力”活动.
故答案为:
本题考查了阅读理解能力,解题关键是求出需要增加的中签率,属于基础题.
14.
由所有矩形面积之和为1求出区间对应矩形的高度,区间与的概率之和即为所求.
【详解】
设区间对应矩形的高度为,则由所有矩形面积之和为1,得,解得,所以该件产品为二等品的概率为.
故答案为:
本题考查频率分布直方图,频率估计概率,属于基础题.
15.0
根据游戏规则,转盘停止后,指针所在区域再前进相应格数后所在位置均为标为偶数的区域,而得到随身听对应的区域均标为奇数,即可求得
【详解】
转盘停止后,指针所在区域再前进相应格数后所在位置均为标为偶数的区域,
又 得到随身听对应的区域均标为奇数,
得到的奖品为随身听的概率为.
故答案为:.
本题考查了概率在实际中的应用,解题关键是理解游戏规则和掌握概率的基础知识,考查了分析能力,属于基础题.
16.19
由概率的定义进行计算可得答案.
【详解】
解:由题意:某厂的产品合格率是95% ,从该厂抽出20件产品进行检查,其中合格产品的件数最有可能是:,
故答案为:.
本题主要考查概率的定义,相对简单.
17.甲.
分别求出甲箱中取到白球的概率和乙箱中取到白球的概率,由此进行判断.
【详解】
解:甲箱有99个白球1个黑球,
随机地取出一球,得白球的可能性是,
乙箱中有1个白球和99个黑球,从中任取一球,得白球的可能性是,
由此看到,这一白球从甲箱中抽出的概率比从乙箱中抽出的概率大得多.
既然在一次抽样中抽得白球,当然可以认为是由概率大的箱子中抽出的.
我们作出推断是从甲箱中抽出的.
故答案为:甲
本题考查概率的应用,属于基础题,解题时要认真审题,注意概率的计算.
18.(1);(2);(3).
(1)由频率分布直方图的高之和为组距分之一,即可得出结果;
(2)根据样本容量、总体与频率之间的关系计算即可得出结果;
(3)用总面积1减去左边2个矩形的面积即可.
【详解】
解:(1)由频率分布直方图的性质得:
,
解得.
(2)∵成绩在的学生人数为6,
由频率分布直方图得成绩在的学生所占频率为:,
∴.
(3)根据样本估计“该校高一学生期末数学考试成绩70”的概率:
.
19.(1);(2)平均数为,中位数设为;(3).
(1)由各组的频率和为1,列方程可求出的值;
(2)由平均数的公式直接求解,由图可得中位数在第3组,若设中位数设为,则,从而可求得的值;
(3)满意度评分值在内有人,其中男生3人,女生2人,从5人中选2人,用列举法列出所有情况,利用概率公式求解即可
【详解】
(1)由,解得.
(2)这组数据的平均数为.
中位数设为,则,解得.
(3)满意度评分值在内有人,其中男生3人,女生2人.记为,
记“满意度评分值为的人中随机抽取2人进行座谈,恰有1名女生”为事件,
从5人中抽取2人有:,,,,, ,,,,
所以总基本事件个数为10个,包含的基本事件个数为3个,
所以 .
20.(I)6人,9人,10人;
(II)(i)见解析;(ii).
(I)根据题中所给的老、中、青员工人数,求得人数比,利用分层抽样要求每个个体被抽到的概率是相等的,结合样本容量求得结果;
(II)(I)根据6人中随机抽取2人,将所有的结果一一列出;
(ii)根据题意,找出满足条件的基本事件,利用公式求得概率.
【详解】
(I)由已知,老、中、青员工人数之比为,
由于采取分层抽样的方法从中抽取25位员工,
因此应从老、中、青员工中分别抽取6人,9人,10人.
(II)(i)从已知的6人中随机抽取2人的所有可能结果为
,,,,共15种;
(ii)由表格知,符合题意的所有可能结果为,,,,共11种,
所以,事件M发生的概率.
本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型即其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.
21.(Ⅰ)小时(Ⅱ)(Ⅲ)
(Ⅰ)由表中数据计算平均数即可;
(Ⅱ)列举出任选2人的所有情况,再由古典概型的概率公式计算即可;
(Ⅲ)根据数据的离散程度结合方差的性质得出
【详解】
(Ⅰ)这个班级女生在该周的平均锻炼时长为小时
(Ⅱ)由表中数据可知,锻炼8小时的学生中男生有人,记为,女生有人,记为
从中任选2人的所有情况为,,,共种,
其中选到男生和女生各1人的共有种
故选到男生和女生各1人的概率
(Ⅲ)
关键点睛:在第二问中,关键是利用列举法得出所有的情况,再结合古典概型的概率公式进行求解.
答案第1页,共2页
答案第1页,共2页