第八章 分式
【知识网络】
第一讲 分式的运算
【知识要点】1.分式的概念以及基本性质;
2.与分式运算有关的运算法则
3.分式的化简求值(通分与约分)
4.幂的运算法则
【主要公式】1.同分母加减法则:
2.异分母加减法则:;
3.分式的乘法与除法:,
4.乘法公式与因式分解:平方差与完全平方式
(a+b)(a-b)= a2- b2 ;(a±b)2= a2±2ab+b2
(一)、分式定义及有关题型
一 分式的概念:
如果表示两个整式,并且中含有字母,那么代数式叫做分式.
1.考查分式的定义
【例1】下列代数式中:,是分式的有: .
分式有意义,无意义,或等于零的条件
在分式中中,时,分式有意义;时,分式无意义;当且时,.
【例2】当有何值时,下列分式有意义,无意义,值为0.
(1) (2) (3)
四 分式的值为正、负的条件
若的值为正即,则或
若的值为负即,则或
若的值为非负即,则或
【例4】(1)当为何值时,分式为正;
(2)当为何值时,分式为负;
(3)当为何值时,分式为非负数.
练习:
1.当取何值时,下列分式有意义?无意义?值为0?:
(1) (2)(3)
3.解下列不等式
(1) (2)
(二)分式的基本性质及有关题型
1.分式的基本性质:
2.分式的变号法则:
a.化分数系数、小数系数为整数系数
【例1】不改变分式的值,把分子、分母的系数化为整数.
(1) (2)
b.分数的系数变号
【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.
(1) (2) (3)
c.化简求值题
【例3】已知:,求的值.
提示:整体代入,①,②转化出.
【例4】已知:,求的值.
【例5】若,求的值.
练习:
1.不改变分式的值,把下列分式的分子、分母的系数化为整数.
(1) (2)
2.已知:,求的值.
3.已知:,求的值.
4.若,求的值.
5.如果,试化简.
(三)分式的运算
1.确定最简公分母的方法:
①最简公分母的系数,取各分母系数的最小公倍数;
②最简公分母的字母因式取各分母所有字母的最高次幂.
2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;
②取分子、分母相同的字母因式的最低次幂.
a.通分
【例1】将下列各式分别通分.
(1); (2);
(3); (4)
b.约分
【例2】约分:
(1);(3);(3).
c.分式的混合运算
【例3】计算:
(1); (2);
(3); (4);
(5);
(6);
(7)
d.化简求值题
【例4】先化简后求值
(1)已知:,求分子的值;
(2)已知:,求的值;
(3)已知:,试求的值.
e.求待定字母的值
【例5】若,试求的值.
练习:
1.计算
(1); (2);
(3); (4);
(5); (6);
(7).
2.先化简后求值
(1),其中满足.
(2)已知,求的值.
3.已知:,试求、的值.
4.当为何整数时,代数式的值是整数,并求出这个整数值.
第二讲 分式方程
【知识要点】1.分式方程的概念以及解法;
2.分式方程产生增根的原因
3.分式方程的应用题
【主要方法】1.分式方程主要是看分母是否有外未知数;
2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.
3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.
(一)分式方程题型分析
1.用常规方法解分式方程
【例1】解下列分式方程
(1);(2);(3);(4)
提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.
特殊方法解分式方程
解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:
a.交叉相乘法
例1.解方程:
b.化归法
例2.解方程:
c.左边通分法
例3:解方程:
d.分子对等法
例4.解方程:
e.观察比较法
例5.解方程:
f.分离常数法
例6.解方程:
g.分组通分法
例7.解方程:
【例2】解下列方程
(1); (2)
提示:(1)换元法,设;(2)裂项法,.
3.求待定字母的值
【例4】若关于的分式方程有增根,求的值.
【例5】若分式方程的解是正数,求的取值范围.
提示:且,且.
4.解含有字母系数的方程
【例6】解关于的方程
提示:(1)是已知数;(2).
列分式方程解应用题
分式方程应用性问题联系实际比较广泛,灵活运用分式的基本性质,有助于解决应用问题中出现的分式化简、计算、求值等题目,运用分式的计算有助于解决日常生活实际问题.
a.营销类应用性问题
例1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg少3元,比乙种原料0.5kg多1元,问混合后的单价0.5kg是多少元?
分析:市场经济中,常遇到营销类应用性问题,与价格有关的是:单价、总价、平均价等,要了解它们的意义,建立它们之间的关系式.
b.工程类应用性问题
例2 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队共5500元.
⑴求甲、乙、丙各队单独完成全部工程各需多少天?
⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.
分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为天,天,天,可列出分式方程组.
c.行程中的应用性问题
例3 甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.
分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.
d.轮船顺逆水应用问题
例4 轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度
分析:此题的等量关系很明显:顺水航行30千米的时间= 逆水中航行20千米的时间,即=.设船在静水中的速度为千米/时,又知水流速度,于是顺水航行速度、逆水航行速度可用未知数表示,问题可解决.
e.浓度应用性问题
例5 要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%.
分析:浓度问题的基本关系是:=浓度.此问题中变化前后三个基本量的关系如下表:
设加入盐千克.
溶液
溶质
浓度
加盐前
40
40×15%
15%
加盐后
40+
40×15%+
20%
根据基本关系即可列方程.
f.货物运输应用性问题
例6 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运次、次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t.
问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;
⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t付运费20元计算)
分析:解题思路应先求出乙车与甲车每次运货量的比,再设出甲车每次运货量是丙车每次运货量的倍,列出分式方程.
练习:
1.解下列方程:
(1); (2);
(3); (4)
(5) (6)
(7)
2.解关于的方程:
(1);(2).
3.如果解关于的方程会产生增根,求的值.
4.当为何值时,关于的方程的解为非负数.
5.已知关于的分式方程无解,试求的值.