2020-2021年全国各省高考物理试题分类汇编——电磁感应(解答题)
1.(2021·浙江·高考真题)如图所示,水平固定一半径r=0.2m的金属圆环,长均为r,电阻均为R0的两金属棒沿直径放置,其中一端与圆环接触良好,另一端固定在过圆心的导电竖直转轴OO′上,并随轴以角速度=600rad/s匀速转动,圆环内左半圆均存在磁感应强度大小为B1的匀强磁场。圆环边缘、与转轴良好接触的电刷分别与间距l1的水平放置的平行金属轨道相连,轨道间接有电容C=0.09F的电容器,通过单刀双掷开关S可分别与接线柱1、2相连。电容器左侧宽度也为l1、长度为l2、磁感应强度大小为B2的匀强磁场区域。在磁场区域内靠近左侧边缘处垂直轨道放置金属棒ab,磁场区域外有间距也为l1的绝缘轨道与金属轨道平滑连接,在绝缘轨道的水平段上放置“[”形金属框fcde。棒ab长度和“[”形框的宽度也均为l1、质量均为m=0.01kg,de与cf长度均为l3=0.08m,已知l1=0.25m,l2=0.068m,B1=B2=1T、方向均为竖直向上;棒ab和“[”形框的cd边的电阻均为R=0.1,除已给电阻外其他电阻不计,轨道均光滑,棒ab与轨道接触良好且运动过程中始终与轨道垂直。开始时开关S和接线柱1接通,待电容器充电完毕后,将S从1拨到2,电容器放电,棒ab被弹出磁场后与“[”形框粘在一起形成闭合框abcd,此时将S与2断开,已知框abcd在倾斜轨道上重心上升0.2m后返回进入磁场。
(1)求电容器充电完毕后所带的电荷量Q,哪个极板(M或N)带正电?
(2)求电容器释放的电荷量;
(3)求框abcd进入磁场后,ab边与磁场区域左边界的最大距离x。
2.(2021·海南·高考真题)如图,间距为l的光滑平行金属导轨,水平放置在方向竖直向下的匀强磁场中,磁场的磁感应强度大小为B,导轨左端接有阻值为R的定值电阻,一质量为m的金属杆放在导轨上。金属杆在水平外力作用下以速度v0向右做匀速直线运动,此时金属杆内自由电子沿杆定向移动的速率为u0。设金属杆内做定向移动的自由电子总量保持不变,金属杆始终与导轨垂直且接触良好,除了电阻R以外不计其它电阻。
(1)求金属杆中的电流和水平外力的功率;
(2)某时刻撤去外力,经过一段时间,自由电子沿金属杆定向移动的速率变为,求:
(i)这段时间内电阻R上产生的焦耳热;
(ii)这段时间内一直在金属杆内的自由电子沿杆定向移动的距离。
3.(2021·湖北·高考真题)如图(a)所示,两根不计电阻、间距为L的足够长平行光滑金属导轨,竖直固定在匀强磁场中,磁场方向垂直于导轨平面向里,磁感应强度大小为B。导轨上端串联非线性电子元件Z和阻值为R的电阻。元件Z的图像如图(b)所示,当流过元件Z的电流大于或等于时,电压稳定为Um。质量为m、不计电阻的金属棒可沿导轨运动,运动中金属棒始终水平且与导轨保持良好接触。忽略空气阻力及回路中的电流对原磁场的影响,重力加速度大小为g。为了方便计算,取,。以下计算结果只能选用m、g、B、L、R表示。
(1)闭合开关S。,由静止释放金属棒,求金属棒下落的最大速度v1;
(2)断开开关S,由静止释放金属棒,求金属棒下落的最大速度v2;
(3)先闭合开关S,由静止释放金属棒,金属棒达到最大速度后,再断开开关S。忽略回路中电流突变的时间,求S断开瞬间金属棒的加速度大小a。
4.(2021·天津·高考真题)如图所示,两根足够长的平行光滑金属导轨、间距,其电阻不计,两导轨及其构成的平面均与水平面成角,N、Q两端接有的电阻。一金属棒垂直导轨放置,两端与导轨始终有良好接触,已知的质量,电阻,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度大小。在平行于导轨向上的拉力作用下,以初速度沿导轨向上开始运动,可达到最大速度。运动过程中拉力的功率恒定不变,重力加速度。
(1)求拉力的功率P;
(2)开始运动后,经速度达到,此过程中克服安培力做功,求该过程中沿导轨的位移大小x。
5.(2021·福建·高考真题)一种探测气体放电过程的装置如图甲所示,充满氖气()的电离室中有两电极与长直导线连接,并通过两水平长导线与高压电源相连。在与长直导线垂直的平面内,以导线为对称轴安装一个用阻值的细导线绕制、匝数的圆环形螺线管,细导线的始末两端c、d与阻值的电阻连接。螺线管的横截面是半径的圆,其中心与长直导线的距离。气体被电离后在长直导线回路中产生顺时针方向的电流I,其图像如图乙所示。为便于计算,螺线管内各处的磁感应强度大小均可视为,其中。
(1)求内通过长直导线横截面的电荷量Q;
(2)求时,通过螺线管某一匝线圈的磁通量;
(3)若规定为电流的正方向,在不考虑线圈自感的情况下,通过计算,画出通过电阻R的图像;
(4)若规定为电流的正方向,考虑线圈自感,定性画出通过电阻R的图像。
6.(2021·上海·高考真题)如图(a)所示,光滑的平行长直金属导轨置于水平面内,间距为L、导轨左端接有阻值为R的电阻,质量为m的导体棒垂直跨接在导轨上.导轨和导体棒的电阻均不计,且接触良好.在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B.开始时,导体棒静止于磁场区域的右端,当磁场以速度v1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内.
(1)求导体棒所达到的恒定速度v2;
(2)为使导体棒能随磁场运动,阻力最大不能超过多少?
(3)导体棒以恒定速度运动时,单位时间内克服阻力所做的功和电路中消耗的电功率各为多大?
(4)若t=0时磁场由静止开始水平向右做匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其v-t关系如图(b)所示,已知在时刻t导体棒瞬时速度大小为vt,求导体棒做匀加速直线运动时的加速度大小.
7.(2020·北京·高考真题)如图甲所示,匝的线圈(图中只画了2匝),电阻,其两端与一个的电阻相连,线圈内有指向纸内方向的磁场。线圈中的磁通量按图乙所示规律变化。
(1)判断通过电阻的电流方向;(2)求线圈产生的感应电动势;(3)求电阻两端的电压。
8.(2020·北京·高考真题)某试验列车按照设定的直线运动模式,利用计算机控制制动装置,实现安全准确地进站停车。制动装置包括电气制动和机械制动两部分。图1所示为该列车在进站停车过程中设定的加速度大小随速度的变化曲线。
(1)求列车速度从降至经过的时间t及行进的距离x。(保留1位小数)
(2)有关列车电气制动,可以借助图2模型来理解。图中水平平行金属导轨处于竖直方向的匀强磁场中,回路中的电阻阻值为,不计金属棒及导轨的电阻。沿导轨向右运动的过程,对应列车的电气制动过程,可假设棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比。列车开始制动时,其速度和电气制动产生的加速度大小对应图1中的点。论证电气制动产生的加速度大小随列车速度变化的关系,并在图1中画出图线。
(3)制动过程中,除机械制动和电气制动外,列车还会受到随车速减小而减小的空气阻力。分析说明列车从减到的过程中,在哪个速度附近所需机械制动最强
(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)
9.(2020·江苏·高考真题)如图所示,电阻为的正方形单匝线圈的边长为,边与匀强磁场边缘重合。磁场的宽度等于线圈的边长,磁感应强度大小为。在水平拉力作用下,线圈以的速度向右穿过磁场区域。求线圈在上述过程中:
(1)感应电动势的大小E;
(2)所受拉力的大小F;
(3)感应电流产生的热量Q。
10.(2020·浙江·高考真题)如图1所示,在绝缘光滑水平桌面上,以O为原点、水平向右为正方向建立x轴,在区域内存在方向竖直向上的匀强磁场。桌面上有一边长、电阻的正方形线框,当平行于磁场边界的边进入磁场时,在沿x方向的外力F作用下以的速度做匀速运动,直到边进入磁场时撤去外力。若以边进入磁场时作为计时起点,在内磁感应强度B的大小与时间t的关系如图2所示,在内线框始终做匀速运动。
(1)求外力F的大小;
(2)在内存在连续变化的磁场,求磁感应强度B的大小与时间t的关系;
(3)求在内流过导线横截面的电荷量q。
11.(2020·海南·高考真题)如图,两根光滑平行金属导轨置于水平面(纸面)内,导轨间距为L,左端连有阻值为R的电阻.一金属杆置于导轨上,金属杆右侧存在一磁感应强度大小为B、方向竖直向下的匀强磁场区域.已知金属杆以速度v0向右进入磁场区域,做匀变速直线运动,到达磁场区域右边界(图中虚线位置)时速度恰好为零.金属杆与导轨始终保持垂直且接触良好.除左端所连电阻外,其他电阻忽略不计.求金属杆运动到磁场区域正中间时所受安培力的大小及此时电流的功率.
12.(2021·海南·高考真题)如图,一水平面内固定有两根平行的长直金属导轨,导轨间距为l;两根相同的导体棒AB、CD置于导轨上并与导轨垂直,长度均为l;棒与导轨间的动摩擦因数为(最大静摩擦力等于滑动摩擦力):整个装置处于匀强磁场中,磁感应强度大小为B,方向竖直向下。从时开始,对AB棒施加一外力,使AB棒从静止开始向右做匀加速运动,直到时刻撤去外力,此时棒中的感应电流为;已知CD棒在时刻开始运动,运动过程中两棒均与导轨接触良好。两棒的质量均为m,电阻均为R,导轨的电阻不计。重力加速度大小为g。
(1)求AB棒做匀加速运动的加速度大小;
(2)求撤去外力时CD棒的速度大小;
(3)撤去外力后,CD棒在时刻静止,求此时AB棒的速度大小。
13.(2021·北京·高考真题)发电机和电动机具有装置上的类似性,源于它们机理上的类似性。直流发电机和直流电动机的工作原理可以简化为如图1、图2所示的情景。
在竖直向下的磁感应强度为的匀强磁场中,两根光滑平等金属轨道、固定在水平面内,相距为,电阻不计。电阻为的金属导体棒垂直于、放在轨道上,与轨道接触良好,以速度(平行于)向右做匀速运动。图1轨道端点间接有阻值为的电阻,导体棒受到水平向右的外力作用。图2轨道端点间接有直流电源,导体棒通过滑轮匀速提升重物,电路中的电流为。
(1)求在时间内,图1“发电机”产生的电能和图2“电动机”输出的机械能;
(2)从微观角度看,导体棒中的自由电荷所受洛伦兹在上述能量转化中起着重要作用.为了方便,可认为导体棒中的自由电荷为正电荷.。
a.请在图3(图1的导体棒)、图4(图2的导体棒)中,分别画出自由电荷所受洛伦兹力的示意图;
b.我们知道,洛伦兹力对运动电荷不做功.那么,导体棒中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请以图2“电动机”为例,通过计算分析说明。
14.(2021·浙江·高考真题)【加试题】如图所示,倾角θ=370、间距l=0.1m的足够长金属导轨底端接有阻值R=0.1Ω的电阻,质量m=0.1kg的金属棒ab垂直导轨放置,与导轨间的动摩擦因数μ=0.45.建立原点位于底端、方向沿导轨向上的坐标轴x.在0.2m≤x≤0.8m区间有垂直导轨平面向上的匀强磁场.从t=0时刻起,棒ab在沿x轴正方向的外力F作用下从x=0处由静止开始沿斜面向上运动,其速度与位移x满足v=kx(可导出a=kv)k=5s-1.当棒ab运动至x1=0.2m处时,电阻R消耗的电功率P=0.12W,运动至x2=0.8m处时撤去外力F,此后棒ab将继续运动,最终返回至x=0处.棒ab始终保持与导轨垂直,不计其它电阻,求:(提示:可以用F-x图象下的“面积”代表力F做的功
(1)磁感应强度B的大小
(2)外力F随位移x变化的关系式;
(3)在棒ab整个运动过程中,电阻R产生的焦耳热Q.
15.(2021·福建·高考真题)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B的匀强磁场,在此区域内,沿水平面固定一半径为r的圆环形光滑细玻璃管,环心O在区域中心。一质量为m、带电量为q(q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动.已知磁感应强度大小B随时间t的变化关系如图乙所示,其中。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在t=0到t=T0这段时间内,小球不受细管侧壁的作用力,求小球的速度大小v0;
(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。试求t=T0到t=1.5T0这段时间内:
①细管内涡旋电场的场强大小E;
②电场力对小球做的功W。
16.(2021·上海·高考真题)如图所示,竖直平面内有一半径为r、电阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和Ⅱ,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落 过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,设平行轨道足够长。已知导体棒ab下落时的速度大小为v1,下落到MN处的速度大小为v2。
(1)求导体棒ab从A下落时的加速度大小。
(2)若导体棒ab进入磁场Ⅱ后棒中电流大小始终不变,求磁场I和Ⅱ之间的距离h和R2上的电功率P2。
(3)若将磁场Ⅱ的CD边界略微下移,导体棒ab刚进入磁场Ⅱ时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式。
17.(2021·湖北·高考真题)如图所示,间距l=0.3m的平行金属导轨和分别固定在两个竖直面内,在水平面区域内和倾角的斜面区域内分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场.电阻、质量、长为的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好。一端系于K杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有质量m2=0.05kg的小环。已知小环以的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长。取,,。求:
(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率。
18.(2020·北京·高考真题)用密度为d、电阻率为、横截面积为A的薄金属条制成边长为L的闭合正方形框 .如图所示,金属方框水平放在磁极的狭缝间,方框平面与磁场方向平行.
设匀强磁场仅存在于相对磁极之间,其他地方的磁场忽略不计.可认为方框的边和 边都处在磁极之间,极间磁感应强度大小为B.方框从静止开始释放,其平面在下落过程中保持水平(不计空气阻力).
(1)求方框下落的最大速度vm(设磁场区域在数值方向足够长);
(2)当方框下落的加速度为时,求方框的发热功率P;
(3)已知方框下落时间为t时,下落高度为h,其速度为vt(vt试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.(1)0.54C;M板;(2)0.16C;(3)0.14m
【解析】
(1)开关S和接线柱1接通,电容器充电充电过程,对绕转轴OO′转动的棒由右手定则可知其动生电源的电流沿径向向外,即边缘为电源正极,圆心为负极,则M板充正电;
根据法拉第电磁感应定律可知
则电容器的电量为
(2)电容器放电过程有
棒ab被弹出磁场后与“[”形框粘在一起的过程有
棒的上滑过程有
联立解得
(3)设导体框在磁场中减速滑行的总路程为,由动量定理
可得
匀速运动距离为
则
2.(1),;(2)(i),(ii)
【解析】
(1)金属棒切割磁感线产生的感应电动势
E = Blv0
则金属杆中的电流
由题知,金属杆在水平外力作用下以速度v0向右做匀速直线运动则有
根据功率的计算公式有
(2)(i)设金属杆内单位体积的自由电子数为n,金属杆的横截面积为S,则金属杆在水平外力作用下以速度v0向右做匀速直线运动时的电流由微观表示为
解得
当电子沿金属杆定向移动的速率变为时,有
解得
v′ =
根据能量守恒定律有
解得
(ii)由(i)可知在这段时间内金属杆的速度由v0变到,设这段时间内一直在金属杆内的自由电子沿杆定向移动的距离为d,规定水平向右为正方向,则根据动量定理有
由于
解得
3.(1);(2);(3)
【解析】
[关键能力]本题考 查法拉第电磁感应定律、闭合电路欧姆定律等知识,意在考查考生综合电磁学知识以及力学规律处理问题的能力。
[压轴题透析] 3第(1)问通过对金属棒的受力分析以及运动分析,求出当金属棒的加速度为零时的最大速度;第(2)问首先应分析比较第(1)问中的电流与图(b)中Z元件的电压达到最大时的电流大小关系,然后通过定值电阻表示出回路中的最大电流,进而求出金属棒的最大速度;第(3)问的关键在于求出开关断开瞬间回路中的电流,得出导体棒所受的安培力大小,再根据牛顿第二定律求出金属棒的加速度。
(1)闭合开关S,金属棒下落的过程中受竖直向下的重力、竖直向上的安培力作用,当重力与安培力大小相等时,金属棒的加速度为零,速度最大,则
由法拉第电磁感应定律得
由欧姆定律得
解得
(2)由第(1)问得
由于
断开开关S后,当金属棒的速度达到最大时,元件Z两端的电压恒为
此时定值电阻两端的电压为
回路中的电流为
又由欧姆定律得
解得
(3)开关S闭合,当金属棒的速度最大时,金属棒产生的感应电动势为
断开开关S的瞬间,元件Z两端的电压为
则定值电阻两端的电压为
电路中的电流为
金属棒受到的安培力为
对金属棒由牛顿第二定律得
解得
4.(1);(2)
【解析】
(1)在运动过程中,由于拉力功率恒定,做加速度逐渐减小的加速运动,速度达到最大时,加速度为零,设此时拉力的大小为F,安培力大小为,有
设此时回路中的感应电动势为E,由法拉第电磁感应定律,有
设回路中的感应电流为I,由闭合电路欧姆定律,有
受到的安培力
由功率表达式,有
联立上述各式,代入数据解得
(2)从速度到的过程中,由动能定理,有
代入数据解得
5.(1);(2);(3)见解析;(4)见解析
【解析】
(1)由电量和电流的关系可知图像下方的面积表示电荷量,因此有
代入数据解得
(2)由磁通量的定义可得
代入数据可得
(3)在时间内电流均匀增加,有楞次定律可知感应电流的方向,产生恒定的感应电动势
由闭合回路欧姆定律可得
代入数据解得
在电流恒定,穿过圆形螺旋管的磁场恒定,因此感应电动势为零,感应电流为零,而在时间内电流随时间均匀变化,斜率大小和大小相同,因此电流大小相同,由楞次定律可知感应电流的方向为,则图像如图所示
(4)考虑自感的情况下,线框会产生自感电动势阻碍电流的变化,因此开始时电流是缓慢增加的,过一段时间电路达到稳定后自感消失,电流的峰值和之前大小相同,在时间内电路中的磁通量不变化电流要减小为零,因此自感电动势会阻碍电流的减小,使得电流缓慢减小为零。同理,在内电流缓慢增加,过一段时间电路达到稳定后自感消失,在之后,电路中的磁通量不变化电流要减小为零,因此自感电动势会阻碍电流的减小,使得电流缓慢减小为零。图像如图
6.(1) (2 ) (3) (4)
【解析】
导体棒受力平衡,可求所达到的恒定速度v2,为使导体棒能随磁场运动,阻力最大不能超过所受的最大安培力,即导体棒不动时,安培力最大,由受力平衡可求;根据能量守恒、功率关系求解;对导体棒受力分析由牛顿第二定律,且加速度为斜率.
解:(1)有电磁感应定律,得
E=BL(v1﹣v2)
闭合电路欧姆定律
I=
导体棒所受安培力
速度恒定时有
可得
(2)为使导体棒能随磁场运动,阻力最大不能超过所受的最大安培力,即导体棒不动时,安培力最大为
(3)根据能量守恒,单位时间内克服阻力所做的功,即摩擦力的功率
电路中消耗的电功
(4)因导体棒要做匀加速运动, :
则
可解得
7.(1);(2);(3)
【解析】
(1)根据图像可知,线圈中垂直于纸面向里的磁场增大,为了阻碍线圈中磁通量的增大,根据楞次定律可知线圈中感应电流产生的磁场垂直于纸面向外,根据安培定则可知线圈中的感应电流为逆时针方向,所通过电阻的电流方向为。
(2)根据法拉第电磁感应定律
(3)电阻两端的电压为路端电压,根据分压规律可知
8.. (1) ,;(2) 列车电气制动产生的加速度与列车的速度成正比,为过P点的正比例函数,论证过程见解析。画出的图线如下图所示:
(3)
【解析】
(1)列车速度从降至的过程中做匀减速直线运动,根据运动学公式可得
(2)设金属棒MN的质量为m,磁感应强度为B,导轨宽度为l,MN棒在任意时刻的速度大小为vMN。MN棒切割磁感线产生的感应电动势为
回路中的电流为
MN棒所受安培力大小为
MN棒的加速度大小为
由上式可知与成正比。又因为MN棒运动的速度与列车的速度、棒的加速度与列车电气化制动产生的加速度成正比,所以电气制动产生的加速度a电气与列车的速度v成正比,则电气制动产生的加速度大小随列车速度变化图线如图1所示。
(3)制动过程中,列车受到的阻力是由电气制动、机械制动和空气阻力共同引起的。由(2)可知,电气制动的阻力与列车速度成正比;空气阻力随速度的减小而减小;由题图1并根据牛顿第二定律可知,列车速度在20m/s至3m/s区间所需合力最大且不变。综合以上分析可知,列车速度在3m/s左右所需机械制动最强。
9.(1)0.8V;(2)0.8N;(3)0.32J
【解析】
(1)由题意可知当线框切割磁感线是产生的电动势为
(2)因为线框匀速运动故所受拉力等于安培力,有
根据闭合电路欧姆定律有
结合(1)联立各式代入数据可得F=0.8N;
(3)线框穿过磁场所用的时间为
故线框穿越过程产生的热量为
10.(1);(2);(3)
【解析】
(1)由图2可知,则回路电流
安培力
所以外力
(2)匀速出磁场,电流为0,磁通量不变,时,,磁通量,则t时刻,磁通量
解得
(3)电荷量
电荷量
总电荷量
11.,
【解析】
设金属杆运动的加速度大小为a,运动的位移为x,
根据运动学公式,有
设金属杆运动到磁场区域中间位置时的速度为v,
根据运动学公式,有
联立以上各式解得:
金属杆运动到磁场区域中间位置时,产生的感应电动势为E=BLv
通过金属杆的电流为
金属杆受到的安培力为F=BIL
解得:
电流的功率为
解得:
12.(1);(2);(3)
【解析】
(1)设AB棒做匀加速运动的加速度大小为a,在t=t0时刻AB棒的速度为v0=at0,
此时对CD棒:
联立解得:
(2)在t1时刻,AB棒的速度;
此时
解得
(3)撤去外力后到CD棒静止,对CD棒由动量定理: ,
对AB棒:
联立解得:
13.(1),;(2)a.见解析图,b.见解析
【解析】
(1)图1中,电路中的电流
棒受到的安培力
在时间内,“发电机”产生的电能等于棒克服安培力做的功,有
图2中,棒受到的安培力
在时间内,“电动机”输出的机械能等于安培力对棒做的功,有
(2)a.如图3、图4所示.
b.设自由电荷所带电荷量为,沿导体棒定向移动的速度为,如图4所示,沿棒方向的洛伦兹力
做负功,则有
垂直于棒方向的洛伦兹力
做正功,则有
所以
即导体棒中一个自由电荷所受的洛伦兹力所做的功为零;做负功,阻碍自由电荷的定向移动,宏观上表现为“反电动势”,消耗电源的电源;做正功,宏观上表现为安培力做正功,使机械能增加.大量自由电荷所受洛伦兹力做功的宏观表现是将电能转化为等量的机械能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用。
14.(1);(2)无磁场区间:;有磁场区间:;(3)
【解析】
(1)由
E=Blv,
解得
(2)无磁场区间: ,a=5v=25x
有磁场区间:
(3)上升过程中克服安培力做功(梯形面积)
撤去外力后,棒ab上升的最大距离为s,再次进入磁场时的速度为v',则:
解得v'=2m/s
由于
故棒再次进入磁场后做匀速运动;
下降过程中克服安培力做功:
15.(1);(2)①,②
【解析】
(1)在t=0到t=T0这段时间内,小球不受细管侧壁的作用力,说明洛伦兹力提供向心力,根据牛顿第二定律,有
解得
v0=
(2)①根据法拉第电磁感应定律,感应电动势为
电势差与电场强度的关系,有
U=E 2πr
由上面两式解得
E=
其中
故
E=
②电场力为
F=Eq=
根据牛顿第二定律,有F=ma解得
物体的末速度为
根据动能定理,电场力做的功为
W=
16.(1);(2);(3)
【解析】
(1)以导体棒为研究对象,棒在磁场I中切割磁感线,棒中产生感应电动势,导体棒ab从A下落时,导体棒在重力与安培力作用下做加速运动,由牛顿第二定律得
式中,有
式中
由各式可得到
(2)当导体棒ab通过磁场II时,若安培力恰好等于重力,棒中电流大小始终不变,即
式中
解得
导体棒从MN到CD做加速度为g的匀加速直线运动,有
得
此时导体棒重力的功率为
根据能量守恒定律,此时导体棒重力的功率全部转化为电路中的电功率,即
所以
(3)设导体棒ab进入磁场II后经过时间t的速度大小为,此时安培力大小为
由于导体棒ab做匀加速直线运动,有
根据牛顿第二定律,有
即
由以上各式解得
17.(1);(2)
【解析】
(1)设小环受到的摩擦力大小为Ff,由牛顿第二定律有
解得
(2)设通过K杆的电流为I1,根据平衡有
设回路总电流为I,总电阻为R总,,因为
设Q杆下滑速度大小为v,产生的感应电动势为E,有
拉力的瞬时功率为
联立以上方程得到
18.(1)
(2)
(3)
【解析】
(1)方框质量:
m=4LAd
方框电阻:
方框下落速度为v时,产生的感应电动势:
E=B 2Lv
感应电流:
方框下落过程,受到重力G及安培力F,G=mg=4LAdg,方向竖直向下
安培力,方向竖直向上
当F=G时,方框达到最大速度,即v=vm, 则:
方框下落的最大速度:
(2)方框下落加速度为时,根据牛顿第二定律有:
,
即:
方框的发热功率:
(3)根据能量守恒定律,有:
mgh=
解得:
答案第1页,共2页
答案第1页,共2页