华东师大版数学八年级下册第17章 函数及其图像综合测评练习题(含解析)

文档属性

名称 华东师大版数学八年级下册第17章 函数及其图像综合测评练习题(含解析)
格式 zip
文件大小 383.2KB
资源类型 试卷
版本资源 华东师大版
科目 数学
更新时间 2022-05-19 15:39:37

图片预览

文档简介

华东师大版数学八年级下册第17章 函数及其图像综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )
A. B.
C. D.
2、如果点P(﹣5,b)在第二象限,那么b的取值范围是(  )
A.b≥0 B.b≤0 C.b<0 D.b>0
3、如图,,且点A、B的坐标分别为,则长是( )
A. B.5 C.4 D.3
4、为了更好地保护水资源,造福人类.某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0).则S关于h的函数图象大致是( ).
A. B.
C. D.
5、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )
A.小于0 B.等于0 C.大于0 D.非负数
6、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
A.当时,y随x的增大而增大 B.该函数的图象与y轴有交点
C.该函数图象与x轴的交点为(1,0) D.当时,y的取值范围是
7、下列函数中,y是x的一次函数的是(  )
A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
8、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B.
C. D.
9、在平面直角坐标系中,点在  
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、下列函数中,一次函数是( )
A. B. C. D.(m、n是常数)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题6分,共计30分)
1、像y=x+1,s=-3t+1这些函数解析式都是常数k与自变量的______与常数b的______的形式.
一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做______函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
2、请写出一个过第二象限且与轴交于点的直线表达式___.
3、点P(5,﹣4)到x轴的距离是___.
4、已知点在一、三象限的角平分线上,则的值为______.
5、如果点B与点C的横坐标相同,纵坐标不同,那么直线与y轴的关系为__________.
三、解答题(4小题,每小题10分,共计40分)
1、画出反比例函数和的函数图象,并回答下列问题:
(1)可以用函数图象画法 法,步骤为列表、 、连线.
(2)观察图象可知,它们都是由两支曲线组成,因此称反比例函数的图象为 .函数的两支曲线分别位于第 象限;函数的两支曲线分别位于第 象限.
2、在平面直角坐标系xOy中,将点到x轴和y轴的距离的较大值定义为点M的“相对轴距”,记为.即:如果,那么;如果,那么.例如:点的“相对轴距”.
(1)点的“相对轴距”______;
(2)请在图1中画出“相对轴距”与点的“相对轴距”相等的点组成的图形;
(3)已知点,,,点M,N是内部(含边界)的任意两点.
①直接写出点M与点N的“相对轴距”之比的取值范围;
②将向左平移个单位得到,点与点为内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,请直接写出k的取值范围.
3、如图,在平面直角坐标系中,过点C(0,6)的直线AB与直线OA相交于点A(4,2),动点M在直线OA和射线AC上运动.
(1)求直线AB的解析式;
(2)求△OAB的面积;
(3)是否存在点M,使△OMC的面积是△OAB的面积的?若存在,求出此时点M的坐标;若不存在,说明理由.
4、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
(1)求对角线AB所在直线的函数关系式;
(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.
-参考答案-
一、单选题
1、B
【解析】
【分析】
直接根据题意得出函数关系式,进而得出函数图象.
【详解】
解:由题意可得:t=,是反比例函数,
故只有选项B符合题意.
故选:B.
【点睛】
此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.
2、D
【解析】
【分析】
点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.
【详解】
解:∵点P(﹣5,b)在第二象限,
∴b>0,
故选D.
【点睛】
本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.
3、D
【解析】
【分析】
利用全等三角形的性质证明即可.
【详解】
解:∵A(-1,0),B(0,2),
∴OA=1,OB=2,
∵△AOB≌△CDA,
∴OB=AD=2,
∴OD=AD+AO=2+1=3,
故选D.
【点睛】
本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质,属于中考常考题型.
4、C
【解析】

5、C
【解析】
【分析】
一次函数过第一、二、三象限,则,根据图象结合性质可得答案.
【详解】
解:如图,函数的图象经过第一、二、三象限,
则函数的图象与轴交于正半轴,
故选C
【点睛】
本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.
6、C
【解析】
【分析】
函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
【详解】
解:函数与函数的图象如下图所示:
函数的图象是由函数的图象向下平移1个单位长度后得到的,
A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
故选:C.
【点睛】
本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
7、B
【解析】
【分析】
利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
【详解】
解:∵y=不符合一次函数的形式,故不是一次函数,
∴选项A不符合题意;
∵形如y=kx+b(k,b为常数).
∴y=﹣3x+1中,y是x的一次函数.
故选项B符合题意;
∵y=2是常数函数,
∴选项C不符合题意;
∵y=x2+1不符合一次函数的形式,故不是一次函数,
∴选项D不符合题意;
综上,y是x的一次函数的是选项B.
故选:B.
【点睛】
本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
8、A
【解析】
【分析】
根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.
【详解】
解:作AD∥x轴,作CD⊥AD于点D,如图所示,
由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
∵AD∥x轴,
∴∠DAO+∠AOB=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中

∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选:A.
【点睛】
本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.
9、B
【解析】
【分析】
横坐标小于0,纵坐标大于0,则这点在第二象限.
【详解】
解:,,
在第二象限,
故选:B.
【点睛】
本题考查了点的坐标,四个象限内坐标的符号:第一象限:,;第二象限:,;第三象限:,;第四象限:,;是基础知识要熟练掌握.
10、B
【解析】
【分析】
根据一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数逐一判断即可.
【详解】
解:A.右边不是整式,不是一次函数,不符合题意;
B.y=-2x是一次函数,符合题意;
C.y=x2+2中自变量的次数为2,不是一次函数,不符合题意;
D.y=mx+n(m,n是常数)中m=0时,不是一次函数,不符合题意;
故选:B.
【点睛】
本题考查一次函数的定义,解题的关键是掌握形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.
二、填空题
1、 积 和 一次
【解析】

2、(答案不唯一)
【解析】
【分析】
因为直线过第二象限,与y轴交于点(0,-3),则b=-3.写一个满足题意的直线表达式即可
【详解】
解:直线过第二象限,且与轴交于点,
,,
直线表达式为:.
故答案为:(答案不唯一).
【点睛】
本题考查了一次函数的图像和性质,解题的关键是熟记一次函数的图像和性质.
3、4
【解析】
【分析】
根据点的纵坐标的绝对值就是点到x轴的距离即可求解
【详解】
点P(5,﹣4)到x轴的距离是4
故答案为:4
【点睛】
本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.
4、1
【解析】
【分析】
直接利用一、三象限的角平分线上点横纵坐标相等进而得出答案.
【详解】
解:∵点P(a,2a 1)在一、三象限的角平分线上,
∴a=2a 1,
解得:a=1.
故选:C.
【点睛】
此题主要考查了点的坐标,正确掌握一、三象限的角平分线上点的坐标关系是解题关键.
5、平行或重合##重合或平行
【解析】
【分析】
根据点的坐标规律解答,此题根据图形即可求得.
【详解】
解:点B与点C的横坐标相同,则直线BC//y轴,
当点B与点C在y轴上时,则直线BC与y轴重合.
故答案为:平行或重合.
【点睛】
本题考查了平行于坐标轴的直线上点的坐标特点:平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.
三、解答题
1、 (1)描点;描点
(2)双曲线;一、三;二、四
【解析】

2、 (1)2;
(2)见详解;
(3)①;②
【解析】
【分析】
(1)根据题意正确写出答案即可;
(2)根据题意画出图形即可;
(3)①正确画出图形,根据题意分别求出,的最大值和最小值,代入即可求解;②根据题意确定点在两点(-1,1),(1,1)确定的线段上运动,列不等式即可求解.
(1)
解:点到x轴和y轴的距离的较大值定义为点M的“相对轴距”,点
2;
(2)
解:的“相对轴距”是2,
与点的“相对轴距”相等的点的横纵坐标的最大值为2,
依题意得到的图形是正方形,如图,
(3)
解:①如图,
当点在三角形边界上时,有最大的“相对轴距”和最小的“相对轴距”,
当取小值,取最大值时,有最小值,这时点M与点A重合,点N与点B重合,
的最小值为1,的最大值为3时,的最小值为,
当取最大值,取最小值时,有最大值,这时这时点M与点B重合,点N与点A重合,
的最大值为3,的最小值为1时,的最大值3,

② 点与点为内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,如图,
依题意,点的坐标为,
点在两点(1,1),(-1,1)确定的线段上,


【点睛】
本题考查了坐标平面内点的坐标特征,点到坐标轴的距离,点的平移,解一元一次不等式,正确理解题意是解决问题的关键.
3、 (1)
(2)6
(3)或或或
【解析】
【分析】
(1)根据点的坐标,利用待定系数法即可得;
(2)先求出点的坐标,再根据三角形的面积公式即可得;
(3)先利用待定系数法求出直线的解析式,再分①点在直线上,②点在射线上两种情况,分别根据三角形的面积关系建立方程,解方程即可得.
(1)
解:设直线的解析式为,
将点代入得:,解得,
则直线的解析式为;
(2)
解:对于函数,
当时,,解得,即,

的边上的高为2,
则的面积为;
(3)
解:设直线的解析式为,
将点代入得:,解得,
则直线的解析式为,


的面积是的面积的,
的面积是,
由题意,分以下两种情况:
①当点在直线上时,
设点的坐标为,
则,解得,
所以此时点的坐标为或;
②当点在射线上时,
设点的坐标为,
则,解得,
所以此时点的坐标为或;
综上,点的坐标为或或或.
【点睛】
本题考查了一次函数的几何应用,熟练掌握待定系数法是解题关键.
4、(1);(2)5;(3)点P的坐标为(,-)或(-,)
【解析】
【分析】
(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB BM,再次利用勾股定理得出AM的长;
(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x, x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
【详解】
解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
∴AO=CB=4,OB=AC=8,
∴A点坐标为(0,4),B点坐标为(8,0).
设对角线AB所在直线的函数关系式为y=kx+b,
则有,解得:,
∴对角线AB所在直线的函数关系式为y=-x+4.
(2)∵∠AOB=90°,
∴勾股定理得:AB==4,
∵MN垂直平分AB,
∴BN=AN=AB=2.
∵MN为线段AB的垂直平分线,
∴AM=BM
设AM=a,则BM=a,OM=8-a,
由勾股定理得,a2=42+(8-a)2,
解得a=5,即AM=5.
(3)(方法一)∵OM=3,
∴点M坐标为(3,0).
又∵点A坐标为(0,4),
∴直线AM的解析式为y=-x+4.
∵点P在直线AB:y=-x+4上,
∴设P点坐标为(m,-m+4),
点P到直线AM:x+y-4=0的距离h==.
△PAM的面积S△PAM=AM h=|m|=SOABC=AO OB=32,
解得m=± ,
故点P的坐标为(,-)或(-,).
(方法二)∵S长方形OACB=8×4=32,
∴S△PAM=32.
设点P的坐标为(x,-x+4).
当点P在AM右侧时,S△PAM=MB (yA-yP)=×5×(4+x-4)=32,
解得:x=,
∴点P的坐标为(,-);
当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB yP-10=×5(-x+4)-10=32,
解得:x=-,
∴点P的坐标为(-,).
综上所述,点P的坐标为(,-)或(-,).
【点睛】
本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.