一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集,,集合,,,则
A.,,B.,,
C.,,D.,,
2.已知复数满足,则
A.2 B.0 C. D.
3.已知是函数的极值点,则实数的值为
A.1 B. C.2 D.
4.在我国瓷器的历史上六棱形的瓷器非常常见,因为六、八是中国人的吉利数字,所以许多瓷器都做成六棱形和八棱形的,但是六棱柱形的瓷器只有六棱柱形笔筒,其余的六棱形都不是六棱柱形.如图为一个正六棱柱形状的瓷器笔筒,高为,底面边长为(数据为笔筒的外观数据),用一层绒布将其侧面包裹住,忽略绒布的厚度,则至少需要绒布的面积为
A. B. C. D.
5.函数的图象大致为
A.
B.
C.
D.
6.习近平主席“绿水青山就是金山银山”的反复叮咛,人们已经耳熟能详,由此带来的发展方式转化,实实在在地改变着中国的样貌.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的.已知在过滤过程中的污染物的残留数量(单位:毫克升)与过滤时间(单位:小时)之间的函数关系为(其中是自然对数的底数,为常数,为原污染物总量).若前4个小时废气中的污染物被过滤掉了,则要能够按规定排放废气,还需要过滤小时,则正整数的最小值为 (参考数据:
A.9 B.11 C.13 D.15
7.河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的“八卦”,而龙马身上的图案就叫做“河图”.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.“河图”将一到十分成五行属性分别为金,木,水,火,土的五组,在五行的五种属性中,五行相克的规律为:金克木,木克土,土克水,水克火,火克金;五行相生的规律为:木生火,火生土,土生金,金生水,水生木.现从这十个数中随机抽取3个数,则这3个数字的属性互不相克的条件下,取到属性为土的数字的概率为
A. B. C. D.
8.已知函数,若且,则有
A.可能是奇函数,也可能是偶函数
B.(1)
C.时,
D.(1)
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.2017年1月,《中国青年报》社会调查中心联合问卷网,对多人进行了一项关于“二十四节气”的调查,全部都知道、大部分知道、少部分知道和完全不知道“二十四节气”日期的受访者分别占、、和,则适合表示上述调查结果的是
A.柱形图 B.折线图
C.扇形图 D.频率分布直方图
10.将函数的图象向右平移个单位长度,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数的图象,则下列说法正确的是
A.函数的最大值为2
B.函数的最小正周期为
C.函数的图象关于直线对称
D.函数在区间上单调递增
11.已知椭圆的左、右焦点分别是,,,为椭圆上一点,则下列结论正确的是
A.△的周长为6
B.△的面积为
C.△的内切圆的半径为
D.△的外接圆的直径为
12.如图,正方体的棱长为1,点是线段的中点,点是正方形所在平面内一动点,下列说法正确的是
A.若点是线段的中点,则
B.若点是线段的中点,则平面
C.若平面,则点轨迹在正方形内的长度为
D.若点到的距离与到的距离相等,则点轨迹是抛物线
三、填空题:本题共4小题,每小题5分,共20分。
13.椭圆的离心率为 .
14.已知向量、、,且,,,,则的最小值为 .
15.已知圆锥底面圆半径为2,母线与底面成角为;则圆锥侧面积为 ,若圆锥底面圆周及顶点均在一球上,则该球体积为 .
16.已知实数,,,满足:,,,则的最大值为 .
参考答案:
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集,,集合,,,则
A.,,B.,,
C.,,D.,,
【答案】
【详解】因为,
又集合,,
,,
所以,,.
故选:.
2.已知复数满足,则
A.2 B.0 C. D.
【答案】
【详解】由复数满足,
则,
则,
故选:.
3.已知是函数的极值点,则实数的值为
A.1 B. C.2 D.
【答案】
【详解】,
是函数的极值点,
,解得,
验证:,,
时,,此时函数单调递减;,时,,此时函数单调递增.
是函数的极小值点,
故选:.
4.在我国瓷器的历史上六棱形的瓷器非常常见,因为六、八是中国人的吉利数字,所以许多瓷器都做成六棱形和八棱形的,但是六棱柱形的瓷器只有六棱柱形笔筒,其余的六棱形都不是六棱柱形.如图为一个正六棱柱形状的瓷器笔筒,高为,底面边长为(数据为笔筒的外观数据),用一层绒布将其侧面包裹住,忽略绒布的厚度,则至少需要绒布的面积为
A. B. C. D.
【答案】
【详解】根据正六棱柱的底面边长为,得正六棱柱的侧面积为,
所以至少需要绒布的面积为,
故选:.
5.函数的图象大致为
A.
B.
C.
D.
【答案】
【详解】函数的定义域为,
,则是奇函数,排除,
当时,,排除,
当时,由,得,则右侧前3个零点为,,,
当时,,排除,
故选:.
6.习近平主席“绿水青山就是金山银山”的反复叮咛,人们已经耳熟能详,由此带来的发展方式转化,实实在在地改变着中国的样貌.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的.已知在过滤过程中的污染物的残留数量(单位:毫克升)与过滤时间(单位:小时)之间的函数关系为(其中是自然对数的底数,为常数,为原污染物总量).若前4个小时废气中的污染物被过滤掉了,则要能够按规定排放废气,还需要过滤小时,则正整数的最小值为 (参考数据:
A.9 B.11 C.13 D.15
【答案】
【详解】由题意可得,前4个小时废气中的污染物被过滤掉了,
,
,解得,
由,
则,
,
故整数的最小值为.
故选:.
7.河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的“八卦”,而龙马身上的图案就叫做“河图”.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.“河图”将一到十分成五行属性分别为金,木,水,火,土的五组,在五行的五种属性中,五行相克的规律为:金克木,木克土,土克水,水克火,火克金;五行相生的规律为:木生火,火生土,土生金,金生水,水生木.现从这十个数中随机抽取3个数,则这3个数字的属性互不相克的条件下,取到属性为土的数字的概率为
A. B. C. D.
【答案】
【详解】由题意得数字4,9属性为金,3,8属性为木,1,6属性为水,
2,7属性为火,5,10属性为土,
从这十个数中随机抽取3个数,这3个数字的属性互不相克,
包含的基本事件个数,
这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:
,
这3个数字的属性互不相克的条件下,取到属性为土的数字的概率.
故选:.
8.已知函数,若且,则有
A.可能是奇函数,也可能是偶函数
B.(1)
C.时,
D.(1)
【答案】
【详解】选项:假设为奇函数,因为奇函数关于原点对称,
即与已知矛盾,故函数不可能为奇函数,
故选项错误;
选项:构造函数,
,
由已知有,且,
故,
所以在定义域内单调递增,
故(1),即,
化简可得(1),
故选项错误;
,由三角函数图像可知:,
故由单调性可知,
,
,
其中,
故选项错误;
选项:由单调性有:(1),
故,
化简可得:,
故选项正确.
故选:.
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.2017年1月,《中国青年报》社会调查中心联合问卷网,对多人进行了一项关于“二十四节气”的调查,全部都知道、大部分知道、少部分知道和完全不知道“二十四节气”日期的受访者分别占、、和,则适合表示上述调查结果的是
A.柱形图 B.折线图
C.扇形图 D.频率分布直方图
【答案】
【详解】上述调查结果是分类比例,
适合表示上述调查结果的是柱形图和扇形图,
故选:.
10.将函数的图象向右平移个单位长度,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数的图象,则下列说法正确的是
A.函数的最大值为2
B.函数的最小正周期为
C.函数的图象关于直线对称
D.函数在区间上单调递增
【答案】
【详解】函数的图象向右平移个单位长度,得到的图象,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数的图象;
对于:函数的最大值为2,故正确;
对于:函数的最小正周期为,故错误;
对于:当时,,故错误;
对于:当时,故,故函数在该区间上单调递增,故正确.
故选:.
11.已知椭圆的左、右焦点分别是,,,为椭圆上一点,则下列结论正确的是
A.△的周长为6
B.△的面积为
C.△的内切圆的半径为
D.△的外接圆的直径为
【答案】
【详解】由题意知,,,,
由椭圆的定义知,,,
所以△的周长为,即选项正确;
将,代入椭圆方程得,,解得,
所以△的面积为,即选项正确;
设△的内切圆的半径为,则,即,
所以,即选项正确;
不妨取,,则,,
所以△的面积为,即,所以,
由正弦定理知,△的外接圆的直径,即选项错误.
故选:.
12.如图,正方体的棱长为1,点是线段的中点,点是正方形所在平面内一动点,下列说法正确的是
A.若点是线段的中点,则
B.若点是线段的中点,则平面
C.若平面,则点轨迹在正方形内的长度为
D.若点到的距离与到的距离相等,则点轨迹是抛物线
【答案】
【详解】.如图,取中点,中点,连接,,,
与平行且相等,则是平行四边形,,
又由与平行且相等得平行四边形,,,
而与相交,因此与相交,错;
.建立如图所示的空间直角坐标系,
则,0,,,,0,,,,1,,
,,,
,,是平面的一个法向量,平面,正确;
.在选项基础上,取中点,连接,,,,,,,
由得截面,
由与与平行且相等,得平行四边形,,
又平面,平面,
平面,同理平面,
,,平面,所以平面平面,
平面平面,平面,且平面,
,即线段为点轨迹,在正方形中易得,正确;
.由平面,平面,得,在平面内,到点的距离等于它到直线的距离,其轨迹是抛物线,正确.
故选:.
三、填空题:本题共4小题,每小题5分,共20分。
13.椭圆的离心率为 .
【答案】
【详解】由椭圆,得,,
,.
.
故答案为:.
14.已知向量、、,且,,,,则的最小值为 .
【答案】
【详解】因为,,,
所以,
因为,所以,
故的最小值为.
故答案为:.
15.已知圆锥底面圆半径为2,母线与底面成角为;则圆锥侧面积为 ,若圆锥底面圆周及顶点均在一球上,则该球体积为 .
【答案】,
【详解】如图,
为圆锥底面圆的圆心,圆锥的底面半径,母线与底面所成的角为,
则,
该圆锥的侧面展开图为以为半径,以圆锥底面圆的周长为弧长的扇形,
如图,
则展开后扇形的弧长,
所以,展开后扇形的面积为
即圆锥的侧面积为.
该圆锥的母线与底面所成角为,
圆锥的底面半径为2,
该圆锥的高为,
设球的半径为,
则,
解得,
.
故答案为:,.
16.已知实数,,,满足:,,,则的最大值为 .
【答案】35
【详解】作出圆,与直线,
由题意,,,,都在圆上,
,则,
表示和到直线的距离和的5倍,
由图可知,
取、的中点,过作,垂足为,则,
为等边三角形,为的中点,,
则在圆上运动,故到直线距离的最大值为,
的最大值为.
故.
故答案为:35