新课标人教A版选修4-4 第一讲 坐标系 导学案
§4.1.1—第一课
平面直角坐标系
本课提要:本节课的重点是体会坐标法的作用,掌握坐标法的解题步骤,会运用坐标法解决实际问题与几何问题.
一、 (温故而知新
1.到两个定点A(-1,0)与B(0,1)的距离相等的点的轨迹是什么?
2.在⊿ABC中,已知A(5,0),B(-5,0),且,求顶点C的轨迹方程.
(重点、难点都在这里
【问题1】:某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚4s.已知各观测点到中心的距离都是1020m.试确定巨响发生的位置.(假定声音传播的速度为340m/s,各观测点均在同一平面上.)
练一练:
3.有三个信号检测中心A、B、C,A位于B的正东,相距6千米,C在B的北偏西300,相距4千米.在A测得一信号,4秒后B、C同时测得同一信号.试求信号源P相对于信号A的位置(假设信号传播速度为1千米/秒).
【问题2】:已知⊿ABC的三边满足,BE,CF分别为边AC,AB上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系.
三、 (懂了,不等于会了
4.两个定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹.
5.求直线与曲线的交点坐标.
6.求证:三角形的三条高线交于一点.
平面直角坐标系中的伸缩变换
【基础知识导学】
坐标系包括平面直角坐标系、极坐标系、柱坐标系、球坐标系。
“坐标法”解析几何学习的始终,同学们在不断地体会“数形结合”的思想方法并自始至终强化这一思想方法。
坐标伸缩变换与前面学的坐标平移变换都是将平面图形进行伸缩平移的变换,本质是一样的。
【典型例题】 在同一直角坐标系中,求满足下列图形变换的伸缩变换。
将直线变成直线,
分析:设变换为可将其代入第二个方程,得,与比较,将其变成比较系数得
【解】(1),直线图象上所有点的横坐标不变,纵坐标扩大到原来的4倍可得到直线。
【解题能力测试】
1、已知(的图象可以看作把的图象在其所在的坐标系中的横坐标压缩到原来的倍(纵坐标不变)而得到的,则为( )
A. B .2 C.3 D.
2.在同一直角坐标系中,经过伸缩变换后,曲线C变为曲线则曲线C的方程为( )
A. B. C. D.
3.在同一平面坐标系中,经过伸缩变换后,曲线C变为曲线,求曲线C的方程并画出图象。
【知识要点归纳】
以坐标法为工具,用代数方法研究几何图形是解析几何的主要问题,它的特点是“数形结合”。
能根据问题建立适当的坐标系又是能否准确解决问题的关键。
设点P(x,y)是平面直角坐标系中的任意一点,在变换
的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换。
【潜能强化训练】1.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 (1) (2)。
2,已知点A为定点,线段BC在定直线上滑动,已知|BC|=4,点A到直线的距离为3,求?ABC的外心的轨迹方程。
一 平面直角坐标系
课题:1、平面直角坐标系
教学目的:
知识与技能:回顾在平面直角坐标系中刻画点的位置的方法
能力与与方法:体会坐标系的作用
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
教学重点:体会直角坐标系的作用
教学难点:能够建立适当的直角坐标系,解决数学问题
授课类型:新授课
教学模式:启发、诱导发现教学.
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴 它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定
三、讲解新课:
建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
*变式训练
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置?
例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?
*变式训练
1.一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程
2.在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程
例3 已知Q(a,b),分别按下列条件求出P 的坐标
(1)P是点Q 关于点M(m,n)的对称点
(2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)
*变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?
四、巩固与练习
五、小 结:本节课学习了以下内容:1.如何建立直角坐标系;
2.建标法的基本步骤;
3.什么时候需要建标。
五、课后作业:课本P14页 1,2,3,4
六、课后反思:
建标法,学生学习有印象,但没有主动建标的意识,说明学生数学学习缺乏系统性,需要加强训练。
课题:2、平面直角坐标系中的伸缩变换
教学目标:
知识与技能:平面直角坐标系中的坐标变换
过程与方法:体会坐标变换的作用
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识
教学重点:理解平面直角坐标系中的坐标变换、伸缩变换
教学难点:会用坐标变换、伸缩变换解决实际问题
授课类型:新授课
教学措施与方法:启发、诱导发现教学.
教学过程:
一、阅读教材P4—P8
问题探究1:怎样由正弦曲线得到曲线?
思考:“保持纵坐标不变横坐标缩为原来的一半”的实质是什么?
问题探究2:怎样由正弦曲线得到曲线?
思考:“保持横坐标不变纵坐标缩为原来的3倍”的实质是什么?
问题探究3:怎样由正弦曲线得到曲线?
二、新课讲解:
定义:设P(x,y)是平面直角坐标系中任意一点,在变换
的作用下,点P(x,y)对应P’(x’,y’).称为平面直角坐标系中的伸缩变换
注 (1)
(2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;
(3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。
例1、在直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。
(1)2x+3y=0; (2)
例2、在同一平面坐标系中,经过伸缩变换后,曲线C变为曲线,求曲线C的方程并画出图象。
三、知识应用:
1、已知(的图象可以看作把的图象在其所在的坐标系中的横坐标压缩到原来的倍(纵坐标不变)而得到的,则为( )
A. B .2 C.3 D.
2、在同一直角坐标系中,经过伸缩变换后,曲线C变为曲线则曲线C的方程为( )
A. B.C. D.
3、在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。
(1)
(2)。
四、知识归纳:设点P(x,y)是平面直角坐标系中的任意一点,在变换
的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换
五、作业布置:
1、抛物线经过伸缩变换后得到
2、把圆变成椭圆的伸缩变换为
3、在同一坐标系中将直线变成直线的伸缩变换为
4、把曲线的图象经过伸缩变换得到的图象所对应的方程为
5、在同一平面直角坐标系中,经过伸缩变换后,曲线C变为,则曲线C的方程
六、反思:
第一章 坐标系
【课标要求】
1.坐标系:了解极坐标系;会在极坐标系中用极坐标刻画点的位置;会进行极坐标和直角坐标的互化。了解在球坐标系、柱坐标系中刻画空间中点的位置的方法(本节内容不作要求)。
2.曲线的极坐标方程:了解曲线的极坐标方程的求法;会进行曲线的极坐标方程与直角坐标方程的互化;了解简单图形(过极点的直线、过极点的圆、圆心在极点的圆)的极坐标方程。
3.平面坐标系中几种常见变换(本节内容不作要求)了解在平面直角坐标系中的平移变换与伸缩变换。
第一课时直角坐标系
一、教学目的:
知识与技能:回顾在平面直角坐标系中刻画点的位置的方法
能力与与方法:体会坐标系的作用
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:体会直角坐标系的作用
教学难点:能够建立适当的直角坐标系,解决数学问题
三、教学方法:启发、诱导发现教学.
四、教学过程:
(一)、平面直角坐标系与曲线方程
1、教师设问:问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?问题3:(1).如何把平面内的点与有序实数对(x,y)建立联系?(2).平面直角坐标系中点和有序实数对(x,y)是怎样的关系?问题4:如何研究曲线与方程间的关系?结合课本例子说明曲线与方程的关系?
2、思考交流:(1).在平面直角坐标系中,圆心坐标为(2,3)、 5为半径的圆的方程是什么? (2).在平面直角坐标系中,圆心坐标为(a,b)半径为r的圆的方程是什么?
3、、学生活动:学生回顾并阅读课本,思考讨论交流。教师准对问题讲解。
刻画一个几何图形的位置,需要设定一个参照系
(1)、数轴 它使直线上任一点P都可以由惟一的实数x确定
(2)、平面直角坐标系 :在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定
(3)、空间直角坐标系 :在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定
(4)、抽象概括:在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:A.曲线C上的点坐标都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解为坐标的点都在曲线C上。那么,方程f(x,y)=0叫作曲线C的方程,曲线C叫作方程f(x,y)=0的曲线。
(5)、学生写直线、圆、椭圆、双曲线、抛物线的标准方程并作出相应的图形。
4、学生练习:课本P3练习中1、2题。
5、建系时,根据几何特点选择适当的直角坐标系。
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
(二)、平面直角坐标轴中的伸缩变换
1、在平面直角坐标系中进行伸缩变换,即改变x轴或y轴的单位长度,将会对图形产生影响。
2、探究:(1)在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的 ,就得到正弦曲线y=sin2x。上述的变换实质上就是一个坐标的压缩变换,即: 设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横坐标x缩为原来 ,得到点P’(x’,y’).坐标对应关系为 通常把叫做平面直角坐标系中的一个压缩变换。
(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的 ,在此基础上,将纵坐标变为原来的3倍,就得到正弦曲线y=3sin2x.
设点P(x,y)经变换得到点为P’(x’,y’) 这就是变换公式。通常把这样的变换叫做平面直角坐标系中的一个坐标伸缩变换。
3、例题:课本P4例1.在下列平面直角坐标系中,分别作出以圆点为圆心,6为半径的圆:
(1)、x轴与y轴具有相同的单位长度;(2)、X轴上的单位长度为Y轴上单位长度的2倍;(3)、X轴上的单位长度为Y轴上单位长度的倍。
教师分析:关键是建立坐标伸缩变换关系式。
学生练习,教师准对问题讲评。
反思归纳:在平面直角坐标系中进行坐标伸缩变换,关键是探析坐标伸缩变换公式。
4、巩固训练:课本P6页练习题。
(三)求轨迹方程
1.一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程。
2.在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程。
教师分析,学生练习,准对问题讲评。
反思归纳:求轨迹方程的方法和一般步骤。方法:定义法、直接法、相关点法、待定系数法、参数法。一般步骤:(1)、恰当建系;(2)、分析曲线特征,揭示隐含条件;(3)、找出曲线上与任意点有关的位置关系和满足的几何条件;(4)列出方程。
(四)、小结:本节课学习了以下内容:1.如何建立直角坐标系; 2.建标法的基本步骤;3.什么时候需要建标;4、求轨迹方程的方法和一般步骤;5、在平面直角坐标系中进行坐标伸缩变换,关键是探析坐标伸缩变换公式。
(五)、作业:课本P7页3、8、9、11
五、教学反思:
第一讲 坐标系
第一节 平面直角坐标系
一、选择题
1.已知?ABCD中三个顶点A、B、C的坐标分别是(-1,2)、(3,0)、(5,1),则点D的坐标是 ( ).
A.(9,-1) B.(-3,1)
C.(1,3) D.(2,2)
解析 由平行四边形对边互相平行,即斜率相等,可求出D点坐标.设D(x,
y),
则即∴,故D(1,3).
答案 C
2.把函数y=sin 2x的图象变成y=sin的图象的变换是 ( ).
A.向左平移 B.向右平移
C.向左平移 D.向右平移
解析 设y′=sin2,变换公式为
将其代入y′=sin2,得μy=sin2,
∴μ=1,λ=-,∴
由函数y=sin 2x的图象得到y=sin的图象所作的变换为,故是向左平移个单位.
答案 A
3.在同一平面直角坐标系中,经过伸缩变换后,曲线C变为曲线x′2+4y′2=1,则曲线C的方程为 ( ).
A.25x2+36y2=1 B.9x2+100y2=1
C.10x+24y=1 D.x2+y2=1
解析 将代入x′2+4y′2=1,得25x2+36y2=1,为所求曲线C的方程.
答案 A
4.在同一坐标系中,将曲线y=3sin 2x变为曲线y′=sin x′的伸缩变换是( ).
A. B.
C. D.
解析 设 代入第二个方程y′=sin x′得uy=sin λx,即y=sin λ
x,比较系数可得.
答案 B
二、填空题
5.在△ABC中,B(-2,0),C(2,0),△ABC的周长为10,则A点的轨迹方程为____________________________.
解析 ∵△ABC的周长为10,
∴|AB|+|AC|+|BC|=10.其中|BC|=4,
即有|AB|+|AC|=6>4.
∴A点轨迹为椭圆除去长轴两项两点,
且2a=6,2c=4.∴a=3,c=2,b2=5.
∴A点的轨迹方程为+=1 (y≠0).
答案 +=1 (y≠0)
6.在平面直角坐标系中,方程x2+y2=1所对应的图形经过伸缩变换后的图形所对应的方程是____________.
解析 代入公式,比较可得+=1.
答案 +=1
7.在同一平面直角坐标系中,经过伸缩变换后,曲线C变为曲线x′2+9y′2=9,则曲线C的方程是__________.
答案 x2+y2=1
8.在同一平面直角坐标系中,使曲线y=2sin 3x变为曲线y′=sinx′的伸缩变换是____________________________.
答案
三、解答题
9.已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM∶MB=1∶2,求动点M的轨迹方程.
解 (代入法)设A(a,0),B(0,b),M(x,y),
∵|AB|=6,∴a2+b2=36. ①
M分的比为.
∴? ②
将②式代入①式,化简为+=1.
10.在同一平面直角坐标系中,经过伸缩变换φ:后,曲线C变为曲线x′2-9y′2=9,求曲线C的方程.
解 直接代入得曲线C的方程为x2-y2=1.
11.(图形伸缩变换与坐标变换之间的联系)阐述由曲线y=tan x得到曲线y=3tan 2x的变化过程,并求出坐标伸缩变换.
解 y=tan x的图象上点的纵坐标不变,横坐标缩短为原来的,得到y=tan
2x,再将其纵坐标伸长为原来的3倍,横坐标不变,得到曲线y=3tan 2x.
设y′=3tan 2x′,变换公式为.
将其代入y′=3tan 2x′得,
∴.
课件26张PPT。一.平面直角坐标系的建立思考:声响定位问题 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s,已知各观测点到中心的距离都是1020m,试确定该巨响的位置。(假定当时声音传播的速度为340m/s,各相关点均在同一平面上)(2004年广东高考题)yxBACPo 以接报中心为原点O,以BA方向为x轴,建立直角坐标系.设A、B、C分别是西、东、北观测点, 设P(x,y)为巨响为生点,由B、C同时听到巨响声,得|PC|=|PB|,故P在BC的垂直平分线PO上,PO的方程为y=-x,因A点比B点晚4s听到爆炸声,则 A(1020,0), B(-1020,0), C(0,1020)故|PA|- |PB|=340×4=1360由双曲线定义知P点在以A、B为焦点的
双曲线 上,
答:巨响发生在接报中心的西偏北450距中心 处.用y=-x代入上式,得 ,∵|PA|>|PB|, 解决此类应用题的关键:
1、建立平面直角坐标系
2、设点(点与坐标的对应)
3、列式(方程与坐标的对应)
4、化简
5、说明坐 标 法例1.已知△ABC的三边a,b,c满足 b2+c2=5a2,BE,CF分别为边AC,CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。yx 以△ABC的顶点A为原点O,
边AB所在的直线x轴,建立直角
坐标系,由已知,点A、B、F的
坐标分别为解:A ( 0, 0 ) , B ( c ,0 ) , F ( ,0 ).因此,BE与CF互相垂直. 具体解答过程见书本P4
你能建立不同的直角坐标系解决这个问题吗?比较不同的直角坐标系下解决问题的过程,建立直角坐标系应注意什么问题?建系时,根据几何特点选择适当的直角坐标系。(1)如果图形有对称中心,可以选对称中心为坐标原点;(2)如果图形有对称轴,可以选择对称轴为坐标轴;(3)使图形上的特殊点尽可能多的在坐标轴上。二.平面直角坐标系中的伸缩变换思考:(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?xO?2?y=sinxy=sin2x 在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的 ,就得到正弦曲线y=sin2x. 上述的变换实质上就是一个坐标的压缩变换,即:
设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横坐标x缩为原来 ,得到点P’(x’,y’).坐标对应关系为:坐标对应关系为:(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。设点P(x,y)经变换得到点为P’(x’,y’) 在正弦曲线上任取一点P(x,y),保持横坐标x不变,将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。(3)怎样由正弦曲线y=sinx得到曲线y=3sin2x? 写出其坐标变换。
在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的 ,在此基础上,将纵坐标变为原来的3倍,就得到正弦曲线y=3sin2x.设点P(x,y)经变换得到点为P’(x’,y’)注 (1)
(2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;
(3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。练习:
1.在直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。(1)2x+3y=0; (2)x2+y2=1课堂小结:
(1)体会坐标法的思想,应用坐标法解决几何问题;
(2)掌握平面直角坐标系中的伸缩变换。作业: P8 1, 4, 5
预习: 极坐标系(书本P9-P11)
课件40张PPT。【综合评价】
通过直角坐标系,平面和空间中的点与坐标(有序数组)、曲线与方程建立了联系,实现了数形结合,这些数所表示的几何含义是不同的,同一曲线在不同坐标系下的方程也有不同形式.因此我们研究几何图形时可以根据需要选择不同的坐标系.本讲介绍了极坐标系、柱坐标系和球坐标系,其中极坐标系是重点内容,同学们要认真领会极坐标系下直线和圆的方程,理解它们的特点、意义.【学习目标】
1.回顾在平面直角坐标系中刻画点的位置的方法,体会坐标
系的作用.
2.通过具体例子,了解在平面直角坐标系伸缩变换作用下平
面图形的变化情况.
3.能在极坐标系中用极坐标刻画点的位置,体会在极坐标系
和平面直角坐标系中刻画点的位置的区别,能进行极坐标
和直角坐标的互化.
4.能在极坐标系中给出简单图形(如过极点的直线、过极点或
圆心在极点的圆)的方程.通过比较这些图形在极坐标系
和平面直角坐标系中的方程,体会在用方程刻画平面图形
时选择适当坐标系的意义.5.借助具体实例(如圆形体育场看台的座位、地球的经纬
度等)了解在柱坐标系、球坐标系中刻画空间中点的位
置的方法,并与空间直角坐标系中刻画点的位置的方
法相比较,体会它们的区别.
【学习计划】【课标要求】
1.了解平面直角坐标系的组成,领会坐标法的应用.
2.理解平面直角坐标系中的伸缩变换.
3.能够建立适当的直角坐标系,运用解析法解决数学问题.第一节 平面直角坐标系【核心扫描】
1.对平面直角坐标系的应用以及坐标法的考查是本节热点.
2.本节内容常与方程、平面几何图形结合命题.
3.理解图形伸缩变换与坐标变换之间的关系.(难点)1.平面直角坐标系
(1)平面直角坐标系的作用:使平面上的点与坐标(有序实数
对),曲线与方程建立联系,从而实现数与形的结合.
(2)坐标法:根据几何对象的特征,选择适当的坐标系,建
立它的方程,通过方程研究它的性质及与其他几何图形的关
系.
(3)坐标法解决几何问题的“三步曲”:第一步,建立适当坐
标系,用坐标和方程表示问题中涉及的几何元素,将几何问
题转化成代数问题;第二步,通过代数运算,解决代数问
题;第三步,把代数运算结果“翻译”成几何结论.自学导引2.平面直角坐标系中的伸缩变换
(1)平面直角坐标系中方程表示图形,那么平面图形的伸
缩变换就可归结为坐标伸缩变换,这就是用代数方法研
究几何变换.
想一想 如何理解点的坐标的伸缩变换?
提示 在平面直角坐标系中,变换φ将点P(x,y)变换到P′(x′,y′).当λ>1时,是横向拉伸变换,当0<λ<1时,是横向压缩变换;当μ>1时,是纵向拉伸变换,当0<μ<1时,是纵向压缩变换.1.坐标系是现代数学中的重要内容,它在数学发展的历史上
起着划时代的作用.坐标系的创建,在代数和几何之间架
起了一座桥梁.利用坐标系,我们可以方便地用代数的方
法确定平面内一个点的位置,也可以方便地确定空间内一
个点的位置.它使几何概念得以用代数的方法来描述,几
何图形可以通过代数形式来表达,这样便可将抽象的代数
方程用形象的几何图形表示出来,又可将先进的代数方法
应用于几何学的研究.
建立直角坐标系,数形结合,我们可以解决许多数学问
题,如函数问题就常常需要借助直角坐标系来解决.名师点睛2.解析法解题步骤
第一步:建立适当的坐标系,用坐标和方程表示问题
中涉及的几何元素,将几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:把代数运算的结果“翻译”成几何结论.
3.体会用坐标伸缩变换研究图形伸缩变换的思想方法
(1)平面几何图形的伸缩变换可以归结为坐标伸缩变
换,学习中可结合坐标间的对应关系进行理解.
(2)对于图形的伸缩变换问题,需要搞清新旧坐标,区
别x,y和x′,y′,点(x,y)在原曲线上,点(x′,y′)在变
换后的曲线上,因此点(x,y)的坐标满足原曲线的方
程,点(x′,y′)的坐标适合变换后的曲线方程.【思维导图】题型一 运用坐标法解决解析几何问题【例1】解 以O1O2的中点O为原点,O1O2所在的直线为x轴,建立如图所示的平面直角坐标系,则O1(-2,0),O2(2,0).【反思感悟】 建立坐标系的几个基本原则:
①尽量把点和线段放在坐标轴上.
②对称中心一般放在原点.
③对称轴一般作为坐标轴. 已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.【变式1】解 在?ABCD中,求证:|AC|2+|BD|2=2(|AB|2+|AD|2).
[思维启迪] 解答本题可以运用坐标方法,先在?ABCD所在的平面内建立平面直角坐标系,设出点A、B、C、D的坐标,再由距离公式完成证明.也可以运用向量的线性运算以及数量积运算加以证明.题型二 用坐标法解决平面几何问题【例2】解 法一 坐标法:以A为坐标原点O,AB所在的直线为x轴,建立平面直角坐标系xOy,【反思感悟】 本例实际上为平行四边形的一个重要定理:平行四边形的两条对角线的平方和等于其四边的平方和.法一是运用代数方法即解析法实现几何结论的证明的.这种“以算代证”的解题策略就是坐标方法的表现形式之一.法二运用了向量的数量积运算,更显言简意赅,给人以简捷明快之感. 已知在△ABC中,点D在BC边上,且满足|BD|=|CD|,求证:|AB|2+|AC|2=2(|AD|2+|BD|2).
【变式2】证明 法一 以A为坐标原点O,AB所在直线为x轴,建立平面直角坐标系xOy,则A(0,0),设B(a,0),C(b,c),法二 延长AD到E,使DE=AD,
连接BE,CE,
则四边形ABEC为平行四边形,
由平行四边形的两条对角线的平方和等于四条边的平方和得|AE|2+|BC|2=2(|AB|2+|AC|2),即(2|AD|)2+(2|BD|)2=2(|AB|2+|AC|2),所以|AB|2+|AC|2=2(|AD|2+|BD|2).题型三 平面直角坐标系中的伸缩变换【例3】[思维启迪] 解答本题首先要根据平面直角坐标系中的伸缩变换公式的意义与作用,明确原来的点与变换后的点的坐标,利用方程的思想求解.【变式3】 求满足下列图形变换的伸缩变换:由曲线4x2+9y2=36变成曲线x′2+y′2=1.
[思维启迪] 求满足图形变换的伸缩变换,实际上是求出其变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数就可得了,椭圆伸缩变换之后可得圆或椭圆.方法技巧——求图形伸缩变换的策略【示例】【反思感悟】 伸缩变换要分清新旧坐标,直接利用公式即可,变换后的新坐标用x′,y′表示.单击此处进入 知能提升演练 [P3思考]
我们以信息中心为基点,用角和距离刻画了点P的位置.这种方法与用直角坐标刻画点P的位置有什么区别和联系?你认为哪种方法更方便?
答 直角坐标点的位置用有序数组来刻画.两者的联系是都通过数刻画点,体现了数形结合思想.在这里,应该使用角和距离刻画点P位置更方便. [P4探究]
你能建立与上述解答中不同的直角坐标系解决这个问题吗?比较不同的直角坐标系下解决问题的过程,你认为建立直角坐标系时应注意些什么?
答 可以建立不同的直角坐标系(例如以点F为坐标原点,OB所在直线为x轴建立直角坐标系)解决问题的过程中,根据几何特点选择适当的直角坐标系的一些规则.
如果图形有对称中心,可以选对称中心为坐标原点;
如果图形有对称轴,可以选对称轴为坐标轴;
使图形上的特殊点尽可能多地在坐标轴上. [P8思考]
答 椭圆可以变成圆,抛物线变为抛物线,双曲线变为双曲线,圆可以变为椭圆.我们可以把圆作为椭圆的特例.[课后习题解答]
习题1.1 (第8页)
1.解 设两定点A、B,以线段AB的中点为原点,AB所
在直线为x轴建立直角坐标系,则A、B的坐标为(-3,
0)、(3,0).
设动点为P(x,y),由已知得到|PA|2+|PB|2=26,
即(x+3)2+y2+(x-3)2+y2=26,整理得x2+y2=4.
这就是点M的轨迹方程.这是以AB的中点为圆心,2
为半径的圆.2.解 以直线l为x轴,过点A与l垂直的直线为y轴建立平
面直角坐标系.则点A的坐标为(0,3).设△ABC的外
心为P(x,y),因为P是线段BC的垂直平分线上的点,
所以B、C的坐标分别为(x-2,0),(x+2,0).
因为P也在线段AB的垂直平分线上,
整理得x2-6y+5=0.
这就是所求的轨迹方程.3.证明 法一 如图所示,AD,BE,
CO分别是三角形ABC的三条高,取边
AB所在的直线为x轴,边AB上的高CO
所在的直线为y轴建立直角坐标系.设
A,B,C的坐标依次为(-a,0),(b,
0),(0,c),由方程①与②,解得x=0.
所以,AD,BE的交点H在y轴上.
因此,三角形的三条高线相交于一点.所以(-b)(x+a)+cy=0. ②
①-②得到(a+b)x=0.
因为a+b≠0,所以x=0.所以点H在AB边的高线上,即△ABC的三条高线交于一点.5.