《小数的初步认识》教学设计与意图
教学内容:青岛版《数学》三年级下册第七单元第76-77页。
教学目标:
1.结合具体情境了解小数的含义,会认、读、写小数部分不超过两位的小数,体会小数与分数的密切联系。
2.在合作探究中经历认识小数的过程,提高探究归纳、比较和推理能力。
3.在合作交流中积累数学活动经验,感受小数与生活的密切联系,增强数学学习兴趣。
教学过程:
一、创设情境,提供素材
1. 认小数。
谈话:(出示情境)一起来看情境图,你发现了哪些数学信息?先小声读一读。
提问:这些数中,哪个是我们学过的数?剩下的这些数你认识吗?怎样辨认小数呢?
预设:这些小数中间都有一个点。
师:今天我们就来认识这位新朋友,小数。(板书课题)
2.读小数。
提问:谁能大声地读给大家听一听?这几个小数也会读吗?
学生读小数。
追问:读小数时应该注意什么?
预设:小数点后面的部分是几就读几。
3. 写小数。
谈话:你能把这几个小数写下来吗?
教师巡视,选取代表性资源,全班交流写法。
【设计意图】本环节充分调动学生的生活经验和已有的读写整数的知识基础。学生在尝试读、写小数的过程中,教师重点关注两位小数的读法和写法并适时引导,帮助学生掌握正确读写小数的方法,初步感受学习小数的现实意义。
二、分析素材,理解概念
1.理解一位小数的意义
(1)借助米尺,理解以“米”为单位的一位小数的意义。
谈话:这些小数表示什么意义呢?踢脚线的宽度为0.1米,0.1米有多长呢?
学生在米尺上找一找,同桌相互交流,老师巡视指导。
全班进行交流: 1分米就是0.1米(标注1分米),把1米平均分成10份,取其中的一份就是0.1米。
追问:这位同学是将1米平均分成了10份,取了其中的1份。根据这种分和取的方法,你想到了我们学过的哪个数呢?
预设:。(板书: 米,0.1米)
提问:谁能借助再说一说0.1米有多长?
学生回答,教师评价并顺势板贴。
追问:只有这一段的长度是0.1米吗?你还能找到其他的0.1米吗?为什么这些都是0.1米呢?
学生明确:都是把1米平均分成10份,这每一份都是米,也就是0.1米。
提问:那0.4米、0.5米和0.7米有多长呢?(板书问题)先在米尺上找一找,然后在小组里交流你的想法。
全班交流:
预设1: 4分米就是0.4米,把1米平均分成10份,其中4份是米,也就是0.4米。
预设2:5分米就是0.5米,把1米平均分成10份,其中的5份是米,也就是0.5米。
预设3:7分米就是0.7米,把1米平均分成10份,其中的7份是米,也就是0.7米。
总结:在生活中,你在哪儿还见到过小数呀?
预设1:商品的价钱。
预设2:物品的重量。
(2)借助人民币,理解以“元”为单位的一位小数的意义。
提问:(出示情境)你知道0.1元是多少钱吗?
预设:0.1元就是1角。
追问:为什么1角可以用0.1元来表示呢?
预设:1元等于10角, 1角相当于10份中的1份,就是元,也就是0.1元。
提问: 0.6元是多少钱呢?
预设:6角相当于10份中的6份,就是元,也是0.6元。
(3)借助图形,进一步感悟一位小数的意义。
谈话:想一想,0.1米和0.1元表示的意思一样吗?
预设:不一样。一个是价钱,一个是长度。
追问:那为什么都能用0.1来表示呢?
预设1:都是把1米或1元平均分成10份,取1份。
预设2:都是,只不过单位不同。
提问:你能在这些图形中找到0.1吗?
学生选择一个图形独立尝试,组内交流。
全班交流:
预设:把一条线段平均分成10份,取其中的一份就是,也就是0.1。
追问:虽然大家选择了不同的图形,但是,都是怎样找到0.1的呀?
再一次明确:都是把图形平均分成10份,表示其中的一份,都是表示出了。
追问:这个呢?
预设:和0.3、和0.8
提问:咱们认识了这么多零点几的小数,你对小数有了怎样的认识呢?
预设1:分数与小数有密切联系。
预设2:零点几的小数就是十分之几的分数。
追问:回顾刚才的学习过程,我们是怎样认识这些零点几的小数的呢?
预设1:借助分数认识小数,想到零点几的小数就是十分之几的分数。
预设2:我们是借助米尺、人民币进行研究的。
预设3:用画图的方法进行了研究。
2.初步感悟两位小数的意义。
(1)借助米尺,感知以“米”为单位的两位小数的意义。
谈话:你能不能借助分数的知识再来解决0.01米和0.55米有多长呢?(板贴问题)
同桌合作,全班交流0.01米有多长。
预设:(学生上台指着米尺)0.01米是1厘米,把1米平均分成100份,其中的一份就是米,也就是0.01米。
总结:是的,0.01米也就是米。
全班交流0.55米有多长。
预设:把1米平均分成100份,其中的1份是米,也就是0.01米,所以其中的55份是就是米,也就是0.55米。(板贴:55厘米,米,0.55米)
追问:你能说一说这是多少米吗?下一个用哪个小数表示?谁能用小数继续数下去?
预设:0.88、0.89、0.90、0.91……
(2)借助图形,进一步感悟两位小数的意义。
提问:太棒了,咱们在米尺上找到了这么多零点几几的小数,那你还能在图形中把他们表示出来吗?
学生独立完成后全班订正交流。
追问:对比一下,有什么不同之处呢?(出示课件)
预设1:平均分成10份,一份就是,就是0.1。平均分成100份,一份就是,就是0.01。
预设2:我发现零点几的小数就是十分之几的分数,零点几几的小数就是百分之几的分数。
评价:真善于思考,老师为你们的发现感到骄傲。
【设计意图】通过让学生动手操作,在找一找、说一说、想一想、画一画的过程中帮助学生初步理解小数的意义。给学生充足的时间和空间,充分调动学生已经学过的分数这一知识基础,在长度、钱币、抽象图形等多个素材中生成对一位小数意义的理解,再将探究一位小数的学习方法和经验迁移到两位小数的学习中,让学生经历知识的形成过程,在操作体验中逐步理解小数的意义,引领学生思维向深处发展。
三、巩固拓展,深化概念
谈话:让我们再次回到情境中,儿童床的宽为1.2米,1.2米有多长?(出示课件)
预设1:12分米。
预设2:1米2分米。
谈话:将尺子简化一下变成了条线。在这条线上能表示出哪些小数?
预设1:1.1
预设2:99.9
追问:能想办法找到零点几几的小数吗?
预设:把0-0.1这一段平均分成10份,其中的每一份就是0.01。
提问:你还能找到更小的小数吗?
预设:把0-0.01再平均分成10份,就可以找到0.001。
追问:还能再小吗?
预设:继续平均分下去!
【设计意图】本环节借助数轴,通过放大镜下的平均分,体会小数之间的内在联系,引导学生更深层次地理解小数的意义,感受小数的精细之美,进一步渗透数形结合的思想。
四、总结回顾,梳理提升
谈话:今天我们一起认识了小数,你都有哪些收获?
预设1:我学会了小数的读、写、意义。
预设2:我学会了平均分成10份,零点几的小数就是十分之几的分数。平均分成100份,零点几几的小数就是百分之几的分数。
预设3:我还知道了小数的精细之美。
谈话:小数还有很多的奥秘等我们去探究,相信你们一定会有更多的收获。
【设计意图】本环节教师引导学生在前面充分感知小数的基础上进行回顾、归纳、总结,让学生再次梳理对小数的初步认识过程,不断完善认知结构,从而为以后继续学习小数的其它知识奠定基础。