首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教A版(2019)
选择性必修 第一册
第三章 圆锥曲线的方程
3.1 椭圆
3.1.1椭圆及其标准方程 学案(Word版含答案)
文档属性
名称
3.1.1椭圆及其标准方程 学案(Word版含答案)
格式
zip
文件大小
24.3KB
资源类型
教案
版本资源
人教A版(2019)
科目
数学
更新时间
2022-05-22 08:05:23
点击下载
图片预览
1
2
3
文档简介
椭圆及其标准方程
【学习目标】
1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程。
2.掌握椭圆的定义、标准方程及几何图形。
【学习过程】
知识梳理
1.椭圆的概念:平面内到两个定点F1,F2的距离之和等于________(大于|F1F2|)的点的集合叫作________。这两个定点叫作椭圆的________,两焦点间的距离叫作椭圆的________。当|PF1|+|PF2|=|F1F2|时,轨迹是__________,当|PF1|+|PF2|<|F1F2|时________轨迹。
2.椭圆的方程:焦点在x轴上的椭圆的标准方程为____________,焦点坐标为_ _________,焦距为________,其中c2=a2-b2;焦点在y轴上的椭圆的标准方程为________________。
练习设计
一、选择题
1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( )
A.椭圆 B.直线 C.圆 D.线段
2.椭圆+=1的左右焦点为F1,F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为( )
A.32 B.16 C.8 D.4
3.椭圆2x2+3y2=1的焦点坐标是( )
A. B.(0,±1) C.(±1,0) D.
4.方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是( )
A.(-3,-1) B.(-3,-2) C.(1,+∞) D.(-3,1)
5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点,则该椭圆的方程是( )
A.+=1 B.+=1
C.+=1 D.+=1
6.设F1.F2是椭圆+=1的两个焦点,P是椭圆上一点,且P到两个焦点的距离之差为2,则△PF1F2是( )
A.钝角三角形 B.锐角三角形
C.斜三角形 D.直角三角形
题 号 1 2 3 4 5 6
答 案
二、填空题
7.(2009·北京)椭圆+=1的焦点为F1.F2,点P在椭圆上。若|PF1|=4,则|PF2|=________,∠F1PF2的大小为________。
8.P是椭圆+=1上的点,F1和F2是该椭圆的焦点,则k=|PF1|·|PF2|的最大值是______,最小值是______。 9.“神舟六号”载人航天飞船的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面n千米,远地点距地面m千米,地球半径为R,那么这个椭圆的焦距为________千米。
三、解答题
10.根据下列条件,求椭圆的标准方程。
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;
(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点。
11.已知点A(0,)和圆O1:x2+(y+)2=16,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程。
能力提升
12.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为( )
A.2 B.3 C.6 D.8
13.如图△ABC中底边BC=12,其它两边AB和AC上中线的和为30,求此三角形重心G的轨迹方程,并求顶点A的轨迹方程。
【课后点拨】
1.椭圆的定义中只有当距离之和2a>|F1F2|时轨迹才是椭圆,如果2a=|F1F2|,轨迹是线段F1F2,如果2a<|F1F2|,则不存在轨迹。
2.椭圆的标准方程有两种表达式,但总有a>b>0,因此判断椭圆的焦点所在的坐标轴要看方程中的分母,焦点在分母大的对应轴上。
3.求椭圆的标准方程常用待定系数法,一般是先判断焦点所在的坐标轴进而设出相应的标准方程,然后再计算;如果不能确定焦点的位置,有两种方法求解,一是分类讨论,二是设椭圆方程的一般形式,即mx2+ny2=1 (m,n为不相等的正数)。
4.在与椭圆有关的求轨迹方程的问题中要注意挖掘几何关系。
知识梳理
1.常数 椭圆 焦点 焦距 线段F1F2 不存在
2.+=1 (a>b>0) F1(-c,0),F2(c,0) 2c +=1 (a>b>0)
练习设计
1.D [∵|MF1|+|MF2|=6=|F1F2|,
∴动点M的轨迹是线段。]
2.B [由椭圆方程知2a=8,
由椭圆的定义知|AF1|+|AF2|=2a=8,
|BF1|+|BF2|=2a=8,所以△ABF2的周长为16.]
3.D
4.B [|a|-1>a+3>0,解得-3
5.D [椭圆的焦点在x轴上,排除A、B,
又过点验证即可。]
6.D [由椭圆的定义,知|PF1|+|PF2|=2a=8.
由题可得||PF1|-|PF2||=2,则|PF1|=5或3,|PF2|=3或5.
又|F1F2|=2c=4,∴△PF1F2为直角三角形。]
7.2 120°
解析
∵|PF1|+|PF2|=2a=6,∴|PF2|=6-|PF1|=2.
在△F1PF2中,
cos∠F1PF2=
==-,∴∠F1PF2=120°。
8.4 3
解析 设|PF1|=x,则k=x(2a-x),
因a-c≤|PF1|≤a+c,即1≤x≤3.
∴k=-x2+2ax=-x2+4x=-(x-2)2+4,
∴kmax=4,kmin=3.
9.m-n
解析 设a,c分别是椭圆的长半轴长和半焦距,
则,则2c=m-n。
10.解 (1)∵椭圆的焦点在x轴上,∴设椭圆的标准方程为+=1 (a>b>0)。
∵2a=10,∴a=5,又∵c=4.
∴b2=a2-c2=52-42=9.
故所求椭圆的标准方程为+=1.
(2)∵椭圆的焦点在y轴上,
∴设椭圆的标准方程为+=1 (a>b>0)。
由椭圆的定义知,2a= +
=+=2,
∴a=。
又∵c=2,∴b2=a2-c2=10-4=6.
故所求椭圆的标准方程为+=1.
11.解 ∵|PM|=|PA|,|PM|+|PO1|=4,
∴|PO1|+|PA|=4,又∵|O1A|=2<4,
∴点P的轨迹是以A.O1为焦点的椭圆,
∴c=,a=2,b=1,
∴动点P的轨迹方程为x2+=1.
能力提升
12.C [由椭圆方程得F(-1,0),设P(x0,y0),
则·=(x0,y0)·(x0+1,y0)=x+x0+y。
∵P为椭圆上一点,∴+=1.
∴·=x+x0+3(1-)
=+x0+3=(x0+2)2+2.
∵-2≤x0≤2,
∴·的最大值在x0=2时取得,且最大值等于6.]
13.解 以BC边所在直线为x轴,BC边中点为原点,建立如图所示坐标系,
则B(6,0),C(-6,0),CE、BD为AB.AC边上的中线,则|BD|+|CE|=30.
由重心性质可知
|GB|+|GC|=(|BD|+|CE|)=20.
∵B、C是两个定点,G点到B、C距离和等于定值20,且20>12,
∴G点的轨迹是椭圆,B、C是椭圆焦点。
∴2c=|BC|=12,c=6,2a=20,a=10,b2=a2-c2=102-62=64,
故G点的轨迹方程为+=1 (x≠±10)。
又设G(x′,y′),A(x,y),则有+=1.
由重心坐标公式知故A点轨迹方程为+=1.
即+=1 (x≠±30)。
3 / 6
点击下载
同课章节目录
第一章 空间向量与立体几何
1.1 空间向量及其运算
1.2 空间向量基本定理
1.3 空间向量及其运算的坐标表示
1.4 空间向量的应用
第二章 直线和圆的方程
2.1 直线的倾斜角与斜率
2.2 直线的方程
2.3 直线的交点坐标与距离公式
2.4 圆的方程
2.5 直线与圆、圆与圆的位置
第三章 圆锥曲线的方程
3.1 椭圆
3.2 双曲线
3.3 抛物线
点击下载
VIP下载