10.2 事件的相互独立性(同步练习)
一、选择题
1.两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,目标被击中的概率是( )
A.0.56 B.0.92
C.0.94 D.0.96
2.坛子里放有3个白球,2个黑球,从中不放回地摸球,用A1表示第1次摸得白球,A2表示第2次摸得白球,则A1与A2是( )
A.互斥事件 B.相互独立事件
C.对立事件 D.不相互独立事件
3.在某道路的A,B,C三处设有交通灯,这三盏灯在1分钟内开放绿灯的时间分别为25秒,35秒,45秒,某辆车在这段道路上匀速行驶,则在这三处都不停车的概率为( )
A. B.
C. D.
4.如图所示,A,B,C表示3个开关,若在某段时间内,它们正常工作的概率分别为0.9,0.8,0.7,则该系统的可靠性(3个开关只要一个开关正常工作即可靠)为( )
A.0.504 B.0.994
C.0.496 D.0.064
5.甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为和,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )
A. B.
C. D.
6.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)等于( )
A. B.
C. D.
二、填空题
7.有一道数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,2人试图独立地在半小时内解决它,则2人都未解决的概率为________,问题得到解决的概率为________
8.已知A,B是相互独立事件,且P(A)=,P(B)=,则P(A)=________;P()=________
9.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人都达标的概率是________,三人中至少有一人达标的概率是________
10.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立.则该选手恰好回答了4个问题就晋级下一轮的概率等于________
11.一个人有n把钥匙,其中只有一把可以打开房门,他随意地进行试开,若试开过的钥匙放在一旁,则他第k次恰好打开房门的概率等于____________
三、解答题
12.在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场),共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.
(1)求甲队获第一名且丙队获第二名的概率;(2)求在该次比赛中甲队至少得3分的概率.
13.甲、乙两名跳高运动员在一次2米跳高中成功的概率分别为0.7,0.6,且每次试跳成功与否相互之间没有影响,求:
(1)甲试跳三次,第三次才成功的概率;(2)甲、乙两人在第一次试跳中至少有一人成功的概率.
14.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,求在同一时刻至少有两颗预报准确的概率.
参考答案:
一、选择题
1.C 2.D 3.C 4.B 5.D 6.D
二、填空题
7.答案:, 8.答案:, 9.答案:0.24,0.96
10.答案:0.128
解析:记“该选手恰好回答了4个问题就晋级下一轮”为事件A,由题意,若该选手恰好回答了4个问题就晋级下一轮,必有第二个问题回答错误,第三、四个回答正确,第一个问题可对可错,故P(A)=1×0.2×0.8×0.8=0.128.
11.答案:
解析:由 “第k次恰好打开,前k-1次没有打开”,
∴第k次恰好打开房门的概率为××…××=.
三、解答题
12.解:(1)设甲队获第一且丙队获第二为事件A,则P(A)=××=.
(2)甲队至少得3分有两种情况:两场只胜一场;两场都胜.设事件B为“甲两场只胜一场”,设事件C为“甲两场都胜”,则事件“甲队至少得3分”为B∪C,
则P(B∪C)=P(B)+P(C)=×+×+×=+=.
13.解:记“甲第i次试跳成功”为事件Ai,“乙第i次试跳成功”为事件Bi,依题意得
P(Ai)=0.7,P(Bi)=0.6,且Ai,Bi相互独立.
(1)“甲试跳三次,第三次才成功”为事件A A3,且这三次试跳相互独立.
∴P( A3)=P()P()P(A3)=0.3×0.3×0.7=0.063.
(2)记“甲、乙两人在第一次试跳中至少有一人成功”为事件C.
P(C)=1-P()P()=1-0.3×0.4=0.88.
14.解:设“甲、乙、丙预报准确”分别为事件A,B,C,不准确记为,,,
则P(A)=0.8,P(B)=0.7,P(C)=0.9,P()=0.2,P()=0.3,P()=0.1,
至少两颗预报准确的事件有AB,AC,BC,ABC,这四个事件两两互斥.
所以至少两颗预报准确的概率为
P=P(AB)+P(AC)+P(BC)+P(ABC)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.