第 3 讲 小数应用问题
1、进一步巩固小数除法运算,掌握小数混合运算运算顺序,准确计算;
2、小数运算应用题,掌握常见几类应用题的解题方法,并熟练应用。
课前小测
1、29.6969…保留两位小数是( )。
2、5.5656…的循环节是( ),12.56565…的循环节是( )。
3、7.958958…简写为( ),保留整数是( ),保留一位小数是( )。
4、用四舍五入法求近似数。
循环小数 保留整数 保留一位小数 保留两位小数 保留三位小数
5.95353…
9.9696…
1.635635…
5、把下面的小数按照从小到大的顺序排列。
1.252、1.2525…、1.25、1.2252、1.255
排序是:( )。
1
智慧乐园
兔子追不上乌龟
兔子的速度是乌龟的 10 倍,开始它在乌龟后面 10 里路,当它跑完相差 10 里路
1
时,乌龟已经向前跑完了 1 里;当兔子再跑完相差 1里时,乌龟又向前跑了 里;当
10
1 1 1
兔子又跑完相差这 里路时,乌龟又向前跑了 里;当兔子跑完 里时,乌龟又
10 100 100
1
向前跑了 里;……如此循环,兔子永远也赶不上乌龟啦,小朋友们,你觉得事实
1000
是这样的吗?
知识点 1
小数混合运算
一、小数混合运算顺序
1、小数混合运算顺序与整数混合运算顺序相同。
2、小数混合运算简便运算
2
典例分析
【典例】
1.下面的计算对吗?把不对的改正过来。
2.脱式计算,能简算的要简算。
(1)54.7-42.23-7.77 (2)2.5×0.4÷2.5×0.4
(3)2.64÷2.5÷4 (4)6.07×8.9+6.07×1.1
【演练】
3.脱式计算,能简算的要简算。
(1)3.69÷(1.23×0.5) (2)54÷(3.94+6.86)
(3)3.7÷2.5+2.3÷2.5 (4)3.9÷(1.3×4)
【典例】
4.用简便运算解题。
(1)0.9÷0.125 (2)2.64÷(1.32×5)
3
【演练】
5.用简便运算解题。
(1)1.3÷0.25 (2)9.8÷(4.9×4)
知识点 2
小数运算应用问题
一、小数运算相关应用题
1、简单应用题及一般复合应用题:理清数量关系列式计算。
2、生活中的实际问题
(1)实际意义:“进一法”求结果
例如:包装一定数量物品,每个包装盒容纳物品重量固定,最后一盒的物品不够装满,但是在需要把
物品都装完的前提下,所需盒子总数个数需进一法取整数。
(2)实际意义:“去尾法”求结果
例如:分发一定数量物体给不同的人,当物品数量有剩余但又不足给 1人时,分发到物品的人数需要
去尾取整数。
典例分析
【典例】
6.每 100千克的糖水中含 4.06千克,1千克糖水中含糖多少千克?10千克糖水中含糖多少千克?
【演练】
7.一台织布机 3.25小时织布 53.3米,这台织布机平均每小时织布多少米?
4
【典例】
8.一根 7.5m 长的彩带,做一个蝴蝶结要用 1.3dm,这根彩带可以做多少个蝴蝶结?
【演练】
9.中秋节,爸爸带 100元钱去买月饼,好利来月饼每盒 46.5元,他一共能买多少盒?
【典例】
10.每个油桶最多可装油 2.5千克,要把 36千克油装进这样的油桶里,需要多少个这样的油桶?
【演练】
11.有一批香蕉要包装成箱,如果每箱装 15.4千克,可以装 12箱,如果每箱多装 2.1千克,可以装几箱?
【典例】
12.淘气和妈妈到超市购买物品,请你帮她们把表格填完整。
物品 单价 元 质量 斤 金额 元
牛肉 36.5 1.8
鱼 20.5 22.5
白糖 3 7.95
白菜 2.1
合计金额 100.14
【演练】
13.某市居民每月每户用水缴费原来每立方米 1.90元,现作如下调整。
用水量 20立方米及以下 20立方米以上的部分
收费标准 每立方米 2.30元 每立方米 3.45元
根据以上有关信息完成:王大伯家今年 5 月份的水费,按新的收费标准比原来多缴 20.4元,王大伯家
这个月用水量是多少立方米?
5
举一反三
1、一拖拉机 0.45小时耕地 0.072公顷,这种拖拉机平均每小时耕地( )公顷,耕地 1公顷需要( )
小时。
2、一辆小轿车行 80千米耗油 3.2升,一辆中巴车行 50千米耗油 2.4升,( )车省油。
3、找朋友,连线。
4、一根 17.9 dm 长的彩带,包装礼盒,每个礼盒需要彩带 1.3dm,这根彩带可以包装多少个盒子?
5、每个纸箱只能装 2.5千克的饼干,要装 190千克的饼干,需要这样的纸箱多少个?
6、生产一个纸箱需纸板 0.28平方米.
(1)现有 12.5平方米纸板,可生产这种纸箱多少个?
(2)若生产 60个这种纸箱,需纸板多少平方米?(得数保留整数)
总结归纳
思维导图
6
实战演练
1、兔子 0.5小时可以跑 22.5千米,兔子每小时跑( )千米。
2、用 300千克黄豆可榨油 39千克,平均 1千克黄豆可榨油( )千克。
3、淘气妈妈花了 18.18元钱买了 1.26千克苹果,淘气数了数,一共有 6个。平均一个苹果重( )千
克,平均一个苹果是( )元钱。
4、口算。
4.95÷0.9= 9.65÷0.1= 0.325×100= 2.5×8=
0.56÷0.7= 0.125×4= 0.36+1.54= 3.9÷0.13=
7.2×0.1= 0.01×0.1= 0.25×0.4= 1.6÷0.8=
1÷2.5= 1.25×0.8= 3.2÷0.04= 0÷1.7=
0.22×100= 9÷0.25÷4= 0.25×3.97×4= (1.2+8.8)×0.4=
5、用简便方法计算。
(1)4.9÷0.125 (2)3.6÷0.18÷20 (3)0.8÷0.32
6、世界上最大的鸟是鸵鸟,体重达 135千克;最小的鸟是蜂鸟,体重只有 1.6克。
鸵鸟的体重是蜂鸟的多少倍?
7、一根 6.4米长的彩带,每 1.4米剪一段包扎一个礼盒,这根彩带可以包扎几个礼盒?
8、一桶油的净含量是 20升,用了 1.1升,剩下的油要把它分装在净含量是 2.5升的小瓶里,需要准备
多少个小瓶?
7
思维拓展
9、一个小数的整数部分所组成的数,加上原来小数的 4倍,和为 27.6,则原来的小数是 。
10、小马虎在计算一道除法题时,把被除数 25.6写成了 256,结果比正确的商多 1.8,正确的商是多少?
8第 1 讲 小数除法
课前小测
1、【解答】被除数;
2、【解答】扩大;
3、【解答】3.9;
4、【解答】5680;商不变的规律;
5、【解答】96千米/小时;0.15升/千米。
知识点 1
典例分析
1、【解答】20.3;0.72。
2、【解答】1.02;0.90。
3、【解答】3.024;3.015。
4、【解答】5.204;5.195。
5、【解答】2500。
6、【解答】0.00025。
7、【解答】百分之一。
8、【解答】十分之一。
知识点 2
典例分析
9、【解答】<、>、<、<。
10、【解答】略,符合题意均可。
11、【解答】0.4。
12、【解答】0.3。
1
五年级数学秋季课程
13、【解答】
算式 四舍五入 去尾法 进一法
22÷17 1.29 1.29 1.30
2.97÷3.9 0.76 0.76 0.77
2.23÷0.56 3.98 3.98 3.99
举一反三
一、填空。
1、【解答】除数。
2、【解答】略。
3、【解答】大于。
4、【解答】③。
5、【解答】①。
6、【解答】5.68÷0.8=7.1。
7、【解答】7.574,7.565。
8、【解答】用竖式计算。
(1)0.54 ÷3.6=0.15 (2)5.63÷7.8≈0.72
9、【解答】脱式计算。
(1)1.8×25+24÷1.5=61 (2)(2.3÷0.46-4.5)÷0.25=2
10、【解答】39.2÷2.8=14。
11、【解答】90÷4.5=20
实战演练
1、C 2、B 3、C 4、D。
5、列式计算。
(1)【解答】214.2÷21×0.7=7.14。
(2)【解答】18.305÷0.7-25.46=0.69。
(3)【解答】7.83÷0.9=8.7。
6、竖式计算并把结果保留两位小数。
【解答】(1)3.87÷0.77≈ 5.03 (2)4.64÷1.3≈3.60 (3)0.32÷4.22≈0.08
2
7、【解答】25.5÷2.5≈11(个)答:至少需要 11 个这样的瓶子。
8、【解答】500÷6.62=75.53
9、【解答】(1)鸭梨的单价是:2.45元;
橘子的单价是 2.30元;
苹果的单价是:21.60÷6=3.60(元);
香蕉的单价是:17.20÷8=2.15(元);2.15<2.30<2.45<3.60;答:香蕉最便宜。
(2)要使买到的水果最多就要买香蕉,橘子和鸭梨三种水果,而且橘子和鸭梨都只买 1 千克,剩下的
钱都买香蕉。
2.30+2.45=4.75(元);(20-4.75)÷2.15=15.25÷2.15≈7(千克);
2.15×7+4.15=15.05+4.75=19.8(元)
答:可以买 1千克的橘子,1千克的鸭梨和 7千克的香蕉,共花了 19.8元。
思维拓展
10、两个数相除商是 1.75,如果把被除数扩大到原来的 100倍,除数缩小到原来的 0.01,商是( )。
【解答】17500。
11、一个数小数点向右移动两位,所得的数比原数大 29.7,原数是( )。
【解答】0.3。
3
五年级数学秋季课程
第 2 讲 循环小数
课前小测
1、【解答】B;
2、【解答】A;
3、【解答】120;
4、【解答】890;91.75;176.34。
5、【解答】7.44。
知识点 1
典例分析
1【解答】略。
【演练】
2、【解答】略。
3、【解答】A。
【演练】
4、【解答】35,725,953。
5、【解答】( 0.6 )>( 0.62626... )>( 0.622… )>( 0.62 )。
【演练】
6、【解答】 0.79 , 0.7 9 。
7、【解答】 6.35 1 6.3 51 6.351 6.351。
【演练】
8、【解答】 0.8 27 0.827 0.82 7 0.827。
9、【解答】
(1)7.35÷11≈0.67 (2)3.9÷2.7≈1.44
【演练】
10、【解答】(1)12.36÷2.4=5.15 (2)8.33÷2.2≈3.79
4
11、【解答】42,2。
【演练】
12、【解答】692307,3。
举一反三
一、填空。
1、【解答】1.7474…。
2、【解答】96。
3、【解答】循环,3.54 7 ,3.55,3.547。
4、【解答】 0.76 ,0.765。
5、【解答】循环, 0.2 7 ,0.27。
6、【解答】 4.92 4.923 4.92 3 4.9 23 。
7、√
8、√
9、×
10、×
11、×。
12、
(1)3.4÷11≈ 0.30 9 (2)3.5÷6≈ 0.583
(3)2.6÷99≈ 0.02 6 (4)14.1÷11≈1.281 8
实战演练
1、【解答】无限。
2、【解答】675。
3、【解答】 0.31 8 ,0.318。
4、【解答】 0.2018 0.2 018 0.201 8 0.20 18 。
5、【解答】 6.53 6 ,6.54。
6、【解答】略。
7、【解答】略。
5
五年级数学秋季课程
8、【解答】 0.75 0.7 5 0.77 0.7755 0.7 。
9、【解答】(1)3.87÷0.77=5.0 25974 (2)4.64÷1.3=3.569 23076
(3)0.32÷4.22≈0.08 (4)6.48÷4.4=1.47 2
10、【解答】略。
思维拓展
11、【解答】9,885。
12、【解答】略。
第 3 讲 小数应用问题
课前小测
1、【解答】29.70。
2、【解答】略。
3、【解答】 7.9 58 。
4、【解答】略。
5、【解答】1.2252<1.25<1.252<1.2525…<1.255。
知识点 1
典例分析
1、【解答】解:如图所示:
2、【解答】
(1)54.7-42.23-7.77=4.7 (2)2.5×0.4÷2.5×0.4=0.16
(3)2.64÷2.5÷4=0.264 (4)6.07×8.9+6.07×1.1=60.7
【演练】
6
3、【解答】
(1)3.69÷(1.23×0.5)=6 (2)54÷(3.94+6.86)=5
(3)3.7÷2.5+2.3÷2.5=2.4 (4)3.9÷(1.3×4)=0.75
4、【解答】
(1)0.9÷0.125=7.2 (2)2.64÷(1.32×5)=0.4
【演练】
5、【解答】
(1)1.3÷0.25=5.2 (2)9.8÷(4.9×4)=0.5
知识点 2
典例分析
6、【解答】解:4.06÷100=0.0406(千克);
0.0406×10=0.406(千克).
答:1千克糖水中含糖 0.0406千克,10千克糖水中含糖 0.406千克.
【演练】
7、【解答】解:53.3÷3.25=16.4(米)
答:这台织布机平均每小时织布 16.4米.
8、【解答】解:7.5米=75分米
75÷1.3≈57(个)
答:这根彩带可以做 57个这样的蝴蝶结.
【演练】
9、【解答】解:100÷46.5≈2(盒)
答:他一共能买 2盒.
10、【解答】解:36÷2.5=14(个)…1(千克),
即需要 14+1=15(个);
答:需要 15个这样的油桶.
【演练】
11、【解答】解:15.4×12÷(15.4+2.1)
=184.8÷17.5
≈11(箱)
7
五年级数学秋季课程
答:可以装 11箱.
12、【解答】略。
【演练】
13、【解答】解:20立方米以下,每立方米多缴:2.30﹣1.90=0.40(元);
20立方米一共多缴:20×0.40=8(元);
20立方米以上每立方米多缴:3.45﹣1.90=1.55(元);
20立方米以上的用水量是:(20.4﹣8)÷1.55=12.4÷1.55=8(立方米);
这个月的用水量是:20+8=28(立方米);
答:王大伯家这个月用水量是 28立方米.
举一反三
1、【解答】0.16,6.25。
2、【解答】解:因为 3.2÷80=0.04(升/千米),
2.4÷50=0.048(升/千米),
且 0.04<0.048,答:小轿车省油.
3、【解答】解:连线如下:
4、【解答】解:7.5米=75分米
75÷1.3≈57(个),答:这根彩带可以做 57个这样的蝴蝶结.
5、【解答】解:190÷2.5=76(个),答:需要这样的纸箱 76个.
6、【解答】解:(1)12.5÷0.28≈44(个)
(2)0.28×60≈17(平方米)
答:可生产这种纸箱 44个;需纸板 17平方米.
实战演练
1、【解答】45。
2、【解答】39÷300=0.13(千克);
8
3、【解答】平均一个苹果重 0.21千克;平均一个苹果是 3.03元钱。
4、【解答】
4.95÷0.9=5.5 9.65÷0.1=96.5 0.325×100=32.5 2.5×8=20
0.56÷0.7=0.8 0.125×4=0.5 0.36+1.54=1.9 3.9÷0.13=30
7.2×0.1=0.72 0.01×0.1=0.001 0.25×0.4=0.1 1.6÷0.8=2
1÷2.5=0.4 1.25×0.8=1 3.2÷0.04=80 0÷1.7=0
0.22×102=22 9÷0.25÷4=9 0.25×3.97×4=3.97 (1.2+8.8)×0.4=4.
5、(1)4.9÷0.125 (2)3.6÷0.18÷20 (3)0.8÷0.32
【解答】解:①4.9÷0.125
=(4.9×8)÷(0.125×8)
=39.2÷1
=39.2
②3.6÷0.18÷20
=20×0.18÷0.18÷20
=(0.18÷0.18)×(20÷20)
=1×1
=1
③0.8÷0.32
=0.8÷(0.8×0.4)
=0.8÷0.8÷0.4
=1÷0.4
=2.5
6、【解答】解:135千克=135000克,
135000÷1.6=84375倍,
答:鸵鸟的体重是蜂鸟的 84375倍.
7、【解答】解:6.4÷1.4≈4.6(个),
0.6个不足一个,要舍去,所以只能包扎 4个.
答:这根彩带可以包扎 4个礼盒.
8、【解答】解:18.9÷2.5=7.56≈8(个);
9
五年级数学秋季课程
答:需要准备 8个小瓶.
思维拓展
9、略
10、【解答】解:256÷25.6=10
1.8÷(10﹣1)
=1.8÷9
=0.2
答:正确的商是 0.2.
第 4 讲 轴对称和平移
课前小测
1、【解答】>、<、>、<、>、=。
2、【解答】略。
3、【解答】(1)6.76÷0.4÷0.25=67.6 (2)(14.21+3.5)÷0.7=2.53 (3)20.3+0.204÷0.17=21.5
4、【解答】10÷2.2≈5,答:能装满 5个这样油瓶。
5、【解答】1688.5÷(24÷1.5)≈106,答:改用小筐需要 106个筐。
知识点 1
典例分析
1、【解答】C。
【演练】
2、【解答】B。
3、【解答】D。
【演练】
4、【解答】D。
5、【解答】略。
10
【演练】
6【解答】略。
7、【解答】等边,等腰,2,4,无数。
8、【解答】略。
9、【解答】略。
【演练】
10、【解答】解:(1)、(2)、(3)作图如下图所示:
11、【解答】紧扣轴对称图形的定义,可绘制出具有对称美的图形如右图所示。
举一反三
1、【解答】轴对称图形、对称轴。
2、【解答】②③④⑥⑦⑧。
3、【解答】略。
4、【解答】左,7;右,7;下,6;上,6。
5、【解答】
11
五年级数学秋季课程
6、【解答】
观察图形可知,第一个图形像个小房子,第二个图形像小船,第三个图形像酒杯.
7、【解答】
实战演练
1、B 2、B 3、B 4、B。
5、【解答】略。
6、【解答】略。
7、【解答】解:根据分析画图如下:
8、【解答】解:在下面的方格中:①画出图形 A向右平移 5格后的图形;②以虚线为对称轴,画出图
12
形 B的轴对称图形.
思维拓展
9、【解答】略。
第 5 讲 因数和倍数
1、理解掌握数的相关概念,弄清整数、自然数之间的关系;
2、掌握因数和倍数的概念,能用列举法找一个数的因数和倍数;
3、体会因数和倍数在实际生活中的作用。
课前小测
1、【解答】解:作图如下:
2、【解答】③。
3、【解答】故答案为:右,4,下,5,作图略。
知识点 1
13
五年级数学秋季课程
典例分析
1、【解答】C。
2、【解答】B。
3、【解答】×。
4、【解答】×。
5、【解答】略。
6、【解答】略。
7、【解答】8,24。
8、【解答】6,18。
9、【解答】0734﹣5084671。
10、【解答】这个号码就是 0592﹣5054631。
11、【解答】解:由分析知:选用 5千克装,75÷5=15(个);
答:选用 5千克装,需这样的桶 15个.
12、【解答】解:48=1×48=2×24=3×16=4×12=6×8;
如果每行 1人,可以排 48行;如果每行 2人,可以排 24行;
如果每行 3人,可以排 16行;如果每行 4人,可以排 12行;
如果每行 6人,可以排 8行;如果每行 8人,可以排 6行;
如果每行 12人,可以排 4行;如果每行 16人,可以排 3行;
如果每行 24人,可以排 2行,如果每行 48人,可以排 1行.
举一反三
1、C 2、C 3、B 4、C 5、B 6、C 7、A。
8、【解答】5和 a,b;b,5和 a。
9、【解答】42。
10、【解答】略。
11、【解答】故答案为:(1)9、3、27、1;(2)9、5、3、1、15、45;(3)9、3、1。
12、【解答】0755-51969312。
实战演练
14
1、A 2、C 3、D 4、B 5、C 6、D 7、A。
8、【解答】3。
9、【解答】因数。
10、【解答】1、2、3、5、6、10、15、30;30。
11、【解答】15。
12、【解答】1、2、3、4、6、8、12、16、24、48。
13、【解答】21。
14、【解答】五(一)班有 42给我同学排队,若每队的人数相同(至少排 2队),有几种排队方法?
42的因数有:1、2、3、6、7、14、21、42。
如果每行 1 人,可以排 42 行;如果每行 2 人,可以排 21 行;
如果每行 3 人,可以排 14 行;如果每行 6 人,可以排 7 行;
如果每行 7 人,可以排 6 行;如果每行 8 人,可以排 6 行;
如果每行 12 人,可以排 4 行;如果每行 16 人,可以排 3 行;
如果每行 24 人,可以排 2 行。
共 10 种情况;答:共有 10 种情况。
15、【解答】32的因数有:1,2,4,8,16,32。
根据题意不可能分给 1 个小朋友,因此可能平均分给 2,4,8,16,32个小朋友;这些小朋友人数在 5~10
人之间,所以这些小朋友有 8人,每人分得 4个糖果。
思维拓展
16、【解答】61。
17、【解答】解:14是 7的倍数,21也是 7的倍数,
14与 21的和是 35,35也是 7的倍数;
18是 9的倍数,27也是 9的倍数,
18与 27的和是 45,45也是 9的倍数;
由此得出:如果两个数分别是一个数的倍数,则这两个数的和也是这个数的倍数.
15
五年级数学秋季课程
第 6 讲 2、5、3 倍数的特征
课前小测
1、【解答】6、12、18。
2、【解答】略。
3、【解答】略。
4、判断题。【解答】√、×、√、×、×、×。
知识点 1
典例分析
1、判断题。【解答】×、√、×、×。
2、【解答】
(1)是 3的倍数。 ( 54 )
(2)同时是 2和 3的倍数。 ( 60 )
(3)同时是 3和 5的倍数。 ( 60 )
(4)同时是 2、3、5的倍数。 ( 60 )
【演练】
3、【解答】
(1)组成是 3的倍数的最大四位数。 ( 9753 )
(2)组成是 5的倍数的最大四位数。 ( 9735 )
(3)组成同时是 3、5的倍数的最大四位数。 ( 9735 )
16
4、【解答】23、25、27。
【演练】
5、【解答】28、30、32。
6、【解答】略。
【演练】
7、【解答】略。
8、【解答】1,4。
【演练】
9、【解答】1,3。
10、【解答】5,7。
【演练】
11、【解答】11,13。
12、【解答】D。
【演练】
13、【解答】A。
举一反三
1、C 2、A 3、A 4、B 5、D 6、C。
7、【解答】0。
8、【解答】990。
9、【解答】8。
10、【解答】2,2。
11、【解答】7,4。
实战演练
1、A 2、C 3、C 4、B 5、C。
6、【解答】3。
7、【解答】80、35。
8、【解答】735。
17
五年级数学秋季课程
9、【解答】2、3。
10、【解答】3。
11、【解答】0。
12、【解答】(1)在能被 2整除的数中,最大的是 984,最小的是 408;
(2)在能被 3整除的数中,最大的是 984,最小的是 405;
(3)在能被 5整除的数中,最大的是 980,最小的是 405。
13、【解答】10,90,100。
思维拓展
14、【解答】5、3 的最小公倍数是 5×3=15,答:至少经过 15 天她们有可能会在图书馆再次相遇。
第 7 讲 因数倍数应用问题
课前小测
1、【解答】9,15。
2、【解答】15,30,45。
3、【解答】120。
4、【解答】6。
5、【解答】B。
6、【解答】②。
7、判断题。【解答】√、√、×、√、×。
知识点 1
典例分析
1、【解答】符合题意即可。
每包瓶数 2 3 4 6 8 12
18
所需包数 24 16 12 8 6 4
【演练】
2、【解答】7个人,每人 5块糖。
3、【解答】解:(1)36=1×36,排成 1行或者 36行,都不符合题意;
(2)36=2×18,排成 2行或者 18行,都不符合题意;
(3)36=3×12,排成 3行,不符合题意;排成 12行,符合题意;
(4)36=4×9,排成 4行,不符合题意;排成 9行,符合题意;
(5)36=6×6,排成 6行,符合题意;
共有排法:1+1+1=3(种),答:一共有 3种不同的排法。
【演练】
4、【解答】解:42=6×7,48=6×8,42和 48的最大公因数是 6,所以每排最多 6人。
42÷6=7(排)
48÷6=8(排)
答:每排最多需要站 6人,五(1)班站了 7排,五(2)班站了 8排。
5、【解答】28块。
【演练】
6、【解答】解:24=6×4,18=6×3,所以 24和 18的最大公约数是 6,
至少可以裁 4×3=12个边长为 6厘米的大正方形.
故至少可以裁 12个边长为 6厘米的大正方形.
7、【解答】解:6=2×3,9=3×3,6和 9的最小公倍数是:3×2×3=18。
所以他们每 18天去一次,5月 25日再过 18天是 6月 12日。
答:下一次一起去外婆家是 6月 12日.
【演练】
8、【解答】解:25=5×5,30=2×3×5,所以 30和 25的最小公倍数是:5×5×2×3=150,
8时 20分+150分=10时 50分,答:下次同时发车是 10时 50分。
9、【解答】解:因为 4÷2=2,
所以 2、3、4的最小公倍数即为 3、4的最小公倍数,
3、4的最小公倍数是 3×4=12,
因为 12×4=48,苹果总数在 40~50之间,
所以一共买来 48个苹果.
19
五年级数学秋季课程
故答案为:48.
【演练】
10、【解答】解:6=2×3,
12=2×2×3,
2×3×5×2=60,
60×2+4=124(个);
答:东东家有 124个鸡蛋.
11、【解答】解:如图所示:
9与 6的最小公倍数是 18;
72÷18+1,
=4+1,
=5(盏).
答:不需要重新安装的路灯至少有 5盏.
【演练】
12、解:8 与 6 的最小公倍数是 24,
(96÷24+1)×2
=(4+1)×2
=5×2
=10(盏)
答:不需要重新安装的路灯有 12 盏。
举一反三
1、【解答】4、5、6。
2、【解答】解:111=3×37,所以:当学生人数为(37-1)36人时,每人植树 3棵。
答:这个班一共有 36个学生,平均每人植树 3棵。
3、【解答】6种。
20
4、【解答】解:这三名选手年龄的最小公倍数是 336,所以他们的年龄都能把 336整除,
在 10到 20之间能把 336整除的数有 12,14,16;
所以他们的年龄分别为 12岁、14岁、16岁。
答:这三名选手的年龄各是 12岁、14岁、16岁。
5、【解答】略。
6、【解答】解:35÷3=11……2,因为每本日记本的单价不可能是循环小数,所以小红认为不对是正确的;
答:每本日记本的单价不可能是循环小数,所以小红的观点是正确的。
7、【解答】解:860的个位是 0,所以能被 5和 2整除,每盒放 5张和 2张能正好装下;
数字和是 8+6+0=14不能被 3整除,所以每盒放 3张,不能正好装下.
8、【解答】解:48的因数有:1、2、3、4、6、8、12、16、24、48,所以有 2、3、4、6、8、12、16、
24、48,9种分法;答:有 9种分法.
9、【解答】解:5的最小倍数为 5,5+2=7;5×7+2=35+2=37,
答:这堆糖果最少可能有 7粒,最多可能有 37粒。
10、【解答】不合适,至少还需要 4枝百合花。
实战演练
1、【解答】B。
2、【解答】略。
3、【解答】解:259=7×37;7+6=13,37+6=43;答:2013年小敏是 8岁,妈妈是 38岁。
4、【解答】因为长×宽=36,又因为长和宽都是整厘米数,
所以 36×1=36,18×2=36,12×3=36,9×4=36,
答:这样的长方形有 4种,长是 36厘米宽是 1厘米或长是 18厘米宽是 2厘米或长是 12厘米宽是 3 厘
米或长是 9厘米宽是 4厘米。
5、【解答】解:甲 5元,乙 35元;甲 10元,乙 30元;甲 15元,乙 25元;甲 20元,乙 20元;
甲 25元,乙 15元;甲 30元,乙 10元;甲 35元,乙 5元。
6、【解答】解:15的大于 1且小于 15的因数有:3、5,
所以,可以分给 3个人,每人 5支,或可以分给 5个人,每人 3支,共 2种分法.
答:可以分给 3个人,每人 5支,或可以分给 5个人,每人 3支,共 2种分法。
7、【解答】解:先把 6和 8分解质因数,
21
五年级数学秋季课程
6=2×3,
8=2×2×2,
6和 8的最小公倍数是 2×3×2×2=24;
答:至少 24天后给这两种花同时浇水.
8、【解答】60。
思维拓展
9、【解答】略。
10、【解答】略。
第 8 讲 平行四边形
课前小测
1、【解答】9、45。
2、【解答】倍,因,14或 28。
12是 6的( )数,12是 60的( )数,一个数既是 56的因数有事 14的倍数,这个数是( )。
3、【解答】C.
4、【解答】B.
5、【解答】C.
6、【解答】知B.识点 1
典例分析
1、【解答】略。
2、【解答】解:10×12=120(平方厘米).答:这个平行四边形的面积是 120平方厘米.
【演练】
22
3、【解答】解:6×7=42(平方厘米)。
4、【解答】略。
5、【解答】解:12×6÷9=8(厘米),(12+8)×2=40(厘米);答:至少要用 40厘米的铁丝。
【演练】
6、【解答】解:需要木条:
24×15÷18=20(米);20×2+24=64(米);平行四边形的面积:
15×24=360(平方米);答:需要木条 64米,这个平行四边形的面积是 360平方米。
7、【解答】解:40×0.9÷0.18,
=36÷0.18,
=200(棵),
答:这块地可种辣椒 200棵。
【演练】
8、【解答】解:12.5×6.4×0.6=80×0.6=48(千克);
答:需要 48千克油漆。
9、【解答】C。
【演练】
10、【解答】B。
举一反三
1、【解答】C.
2、【解答】D.
3、【解答】C.
4、【解答】你有什么启发? 利用割补法可以把平行四边形转化成长方形
推导平行四边形的面积公式时,把一个平行四边形用割补法转化成一个 长方形 ,这个 长方形 的
面积与原来平行四边形的面积 相等 ;长方形的长就是平行四边形的 底 ,长方形的宽就是平行四
边形的 高 .因为长方形的面积= 长×宽 ,所以平行四边形的面积= 底×高 ,用字母表示是
S=ah .
5、【解答】45。
23
五年级数学秋季课程
6、【解答】6。
7、【解答】解:60×35÷50=42(米),
(60+42)×2=102×2=204(米)。答:篱笆的总长度是 204米。
8、【解答】解:5.8×6=34.8(平方米);答:图形的面积是 34.8平方米.
9、【解答】解:18×27=486(平方厘米);
答:这个图形的面积是 486平方厘米.
10、【解答】解:32.4×[(32.4﹣0.3)÷1.5],
=32.4×[32.1÷1.5],
=32.4×21.4,
=693.36(平方厘米)答:平行四边形的面积是 693.36平方厘米.
11、【解答】解:6×2.5×350,
=15×350,
=5250(元)答:这块空地上的花一共可卖 5250元
总结归纳
实战演练
1、
【解答】
平行四边形的面积 a/cm h/cm S/cm2
① 3 3 9
② 2 4 8
③ 4 3 12
2、【解答】81。
3、【解答】42.1875米。
4、【解答】解:3.5×7.6=26.6(平方厘米)
答:这个平行四边形的面积是 26.6平方厘米.
5、【解答】解:72÷12×4,
=6×4,
24
=24(平方厘米),
答:阴影部分的面积是 24平方厘米。
6、【解答】解:28÷4=7(厘米),
7×7=49(平方厘米);
答:平行四边形的面积是 49平方厘米。
7、【解答】解:27×18÷972,
=486÷972,
=0.5(平方米).
答:平均每棵树苗占地 0.5平方米。
8、走进苹果园。
【解答】解:200×70=14000(平方米)
14000平方米=1.4公顷
11.2÷1.4=8(吨)
答:平均每公顷产 8吨苹果。
思维拓展
9、【解答】解:(28×15﹣56)÷28
=(420﹣56)÷28
=364÷28
=13(厘米)
答:平行四边形较长边上的高是 13厘米.
第 9 讲 期中复习(一)
25
五年级数学秋季课程
课前小测
1、【解答】B。
2、【解答】A。
3、【解答】B。
4、【解答】
5、一块平行四边形的地,底边长 1200米,高约为 600米,在这块地里种小麦,平均每平方米可收小麦 3.6
千克,这块地共收割小麦多少千克?合多少吨?
解:3.6×(1200×600)=3.6×720000=2592000(千克)=2592(吨)
5、【解答】解:76×30×50=2280×50=114000(枝)。
答:这块花圃大约能产鲜花 114000枝。
知识点 1
典例分析
1、【解答】解:14.42÷12=1…2.42,答:余数是 2.42;故答案为:×.
【演练】
2、【解答】略。
3、【解答】略。
【演练】
4、【解答】略。
5、【解答】
26.5÷0.053=500 0.34÷9.2≈0.04(保留两位小数) 246.4÷13≈18.95(保留两位小数)
【演练
6、【解答】
4.692÷2.3=2.04 3.432÷6.5=0.528 23÷44≈0.52(用循环小数表示)
7、【解答】解:255.5÷3.5-18.9÷0.5=73-37.8=35.2(千米)
答:燕子每小时比大雁少飞行 35.2千米.
26
【演练】
8、【解答】略。
9、(30-12.8)÷4.5≈3,答:剩下的钱够买 3支铅笔。
【演练】
10、【解答】略。
11、【解答】略。
举一反三
1、【解答】376。
2、【解答】 7.79 13 。
3、【解答】5.9;36;8.01;5、20。
4、【解答】<、>、<,=。
5、【解答】6.533。
6、【解答】D。
7、【解答】C。
8、【解答】C。
9、【解答】
5.1﹣2=3.1 7.2÷1.2=6 3.86×10=38.6 0.4×0.3=0.12 3.9×0.01=0.039
9.73÷10=0.973 98.4÷100=0.985 1﹣0.55=0.45 2.5×4=10 0.5+0.43=0.93
10、【解答】
25.73÷8.3=3.1 0.28÷1.6=0.175 0.84÷3.5=0.24 (验算)
11、【解答】
39÷0.125÷0.8=390 4.8×0.65+0.65×5.2=6.5
12、【解答】2.5÷0.4=6.25≈7(个).
答:要准备 7个瓶子.
27
五年级数学秋季课程
13、【解答】44÷(24+1)=44÷25=1.76(元);
9.4÷5=1.88(元);
1.76元<1.88元;
1.88-1.76=0.12(元)
答:乐乐超市的价格更便宜.每盒便宜 0.12元.
总结归纳
实战演练
1、【解答】0.8。一根钢管长 6.4m,张大爷锯了 7次,平均每段钢管长( )m。
2、【解答】10,2.05。9.925保留整数约是( ),2.045精确到百分位约是( )。
3、【解答】3.204,3.195。一个三位小数四舍五入后是 3.20,这个三位小数最大是( ),最小是( )。
4、【解答】2457,733。
5、【解答】
42.3×0.78≈33.00 (保留两位小数) 6.64÷3.3≈2.01(用循环小数表示)
6、【解答】
4.85×1.25×8=48.5 6.8÷[(4.5﹣2.8)×0.4 ]=10
7、【解答】(48.3+51.7)×6.3=100×6.3=630(千米),答:两地间的公路长 630千米。
8、【解答】解:50.4÷8÷5×5×7=6.3×(5÷5)×7=6.3×7=44.1(千克)
答:5辆汽车 7天节约汽油 44.1千克。
9、【解答】解:22.5×7=157.5(吨),157.5÷5.5≈28.64(吨),答:实际每小时能运 28.64吨。
10、【解答】解:0.8×1.5×37=1.2×37=44.4(千克),答:回收的废纸可生产 44.4千克再生纸。
第 10 讲 期中复习(二)
课前小测
28
1、【解答】B.
2、【解答】B.
3、【解答】<;>;>;<;>;<;>;<;>。
4、【解答】5.6÷6≈0.93 2.86×0.03≈0.9
5、【解答】解:2.25÷0.5=4(个)…0.25(升),需准备:4+1=5(个);答:需准备 5个玻璃杯。
知识点 1
典例分析
1、【解答】m、n;n、m。
2、【解答】5、m和 n,m和 n,5。
3、【解答】略。
4、【解答】略。
5、【解答】(1)350,356。(2)350,635。(3)360,630。
6、【解答】略。
7、【解答】略。
8、【解答】解:如图所示,即为所要求的画图:
9、【解答】解:860的个位是 0,所以能被 5和 2整除,每盒放 5张和 2张能正好装下;
数字和是 8+6+0=14不能被 3整除,所以每盒放 3张,不能正好装下。
10、【解答】每盘装 3个能正好装完;每盘装 5个能正好装完;每盘装 2个不能正好装完。
11、【解答】解:9=3×3,12=2×2×3,
所以 9和 12的最小公倍数是 2×2×3×3=36,即这筐梨至少 36个,答:这筐梨至少有 36个。
29
五年级数学秋季课程
12、【解答】8=2×2×2,6=2×3
所以 8和 6的最小公倍数是 2×2×2×3=24,
所以 72÷24=3(棵),3+1=4(棵),答:不用移栽的树有 4棵.
举一反三
1、【解答】1、m、m。
2、【解答】7042。
3、【解答】120。
4、【解答】2或 3。
5、【解答】12或 24。
6、√ 7、× 8、× 9、×。
10、D 11、C 12、B。
总结归纳
实战演练
1、【解答】C。
2、【解答】在 4,12,21,30,45,67,99,89,60中;
4、12、30、60是偶数;
67、89是质数;
12、21、30、45、99、60是 3的倍数;
30、60是 2,3和 5的倍数。
3、【解答】上,4,右,3,下,2,左,1。
4、【解答】(1)2的倍数:870、780;
(2)3的倍数:870、780;
(3)同时是 2,3,5的倍数:870、780;
5、【解答】略。
6、【解答】略。
7、【解答】这筐梨至少有 18个。
8、【解答】9=3×3,6=2×3,所以 9和 6的最小公倍数是 2×3×3=18;
所以甲乙二人是在 18天后相见;18-2=16,二人见面的时间是在 8月 16日.
30
答:18天后,两人又在图书馆见面,是在 8月 16日.
9、【解答】解:15与 12的最小公倍数是:60.
小明跑的圈数:60÷15=4,
爸爸跑的圈数是:60÷12=5,
答:至少 60分钟后两人再次在起点相遇此时,爸爸和小明各跑了 5圈、4圈.
10、【解答】解:1.8米=180厘米,1.44米=144厘米,
144=2×2×3×2×2×2×3,180=2×2×3×3×5,
所以 180与 144的最大公因数是 2×2×3×3=36,即边长是 36厘米,
答:正方形瓷砖的边长最长是 36厘米.
第 11 讲 三角形
课前小测
1、【解答】3、5、7。
2、【解答】7、11。
3、【解答】合数。
4、【解答】略。
31