人教版数学九年级上册第24章 24.1.4圆周角 同步练习
一、单选题
1.(2017·哈尔滨)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是( )
A.43° B.35° C.34° D.44°
2.(2017·咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则 的长为( )
A.π B. C.2π D.3π
3.(2017·烟台)如图, ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则 的长为( )
A. π B. π C. π D. π
4.(2017·海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( )
A.25° B.50° C.60° D.80°
5.(2017·青岛)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为( )
A.100° B.110° C.115° D.120°
6.(2017·河池)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是( )
A.18° B.36° C.54° D.72°
7.(2017·毕节)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )
A.30° B.50° C.60° D.70°
8.(2017·张家界)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是( )
A.30° B.45° C.55° D.60°
9.(2017·潍坊)如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )
A.50° B.60° C.80° D.90°
10.(2017·山西)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为( )
A.5πcm2 B.10πcm2 C.15πcm2 D.20πcm2
11.(2017·福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是( )
A.∠ADC B.∠ABD C.∠BAC D.∠BAD
12.(2017·黄石)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为( )
A. B. C. D.
二、填空题
13.(2017·湖州)如图,已知在 中, .以 为直径作半圆 ,交 于点 .若 ,则 的度数是 度.
14.(2017·十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5 ,则BC的长为 .
15.(2017·湘潭)如图,在⊙O 中,已知∠AOB=120°,则∠ACB= .
16.(2017·东营)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE CO,其中正确结论的序号是 .
17.(2017·恩施)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2 ,则图中阴影部分的面积为 .(结果不取近似值)
18.(2017·株洲)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM= .
19.(2017·永康模拟)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= .
20.(2017·扬州)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC= °.
21.(2017·靖远模拟)如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于 .
三、解答题
22.(2017·福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(Ⅰ)若AB=4,求 的长;
(Ⅱ)若 = ,AD=AP,求证:PD是⊙O的切线.
23.(2017·滨州)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.
(Ⅰ)求证:直线DM是⊙O的切线;
(Ⅱ)求证:DE2=DF DA.
24.(2017·苏州)如图,已知 内接于 , 是直径,点 在 上, ,过点 作 ,垂足为 ,连接 交 边于点 .
(1)求证: ∽ ;
(2)求证: ;
(3)连接 ,设 的面积为 ,四边形 的面积为 ,若 ,求 的值.
25.(2017·南京)“直角”在初中几何学习中无处不在.
如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).
答案解析部分
1.【答案】B
【知识点】圆周角定理
【解析】【解答】解:∵∠D=∠A=42°,
∴∠B=∠APD﹣∠D=35°,
故选B.
【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.
2.【答案】C
【知识点】圆内接四边形的性质;弧长的计算
【解析】【解答】解:∵四边形ABCD内接于⊙O,
∴∠BCD+∠A=180°,
∵∠BOD=2∠A,∠BOD=∠BCD,
∴2∠A+∠A=180°,
解得:∠A=60°,
∴∠BOD=120°,
∴ 的长= =2π;
故选:C.
【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.
3.【答案】B
【知识点】平行四边形的性质;圆周角定理;弧长的计算
【解析】【解答】解:连接OE,如图所示:
∵四边形ABCD是平行四边形,
∴∠D=∠B=70°,AD=BC=6,
∴OA=OD=3,
∵OD=OE,
∴∠OED=∠D=70°,
∴∠DOE=180°﹣2×70°=40°,
∴ 的长= = ;
故选:B.
【分析】连接OE,由平行四边形的性质得出∠D=∠B=70°,AD=BC=6,得出OA=OD=3,由等腰三角形的性质和三角形内角和定理求出∠DOE=40°,再由弧长公式即可得出答案.
4.【答案】B
【知识点】圆周角定理
【解析】【解答】解:∵OA=OB,∠BAO=25°,
∴∠B=25°.
∵AC∥OB,
∴∠B=∠CAB=25°,
∴∠BOC=2∠CAB=50°.
故选B.
【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.
5.【答案】B
【知识点】圆周角定理
【解析】【解答】解:连接AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠AED=20°,
∴∠ACD=20°,
∴∠BCD=∠ACB+∠ACD=110°,
故选B.
【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.
6.【答案】B
【知识点】垂径定理;圆周角定理
【解析】【解答】解:∵AB是直径,AB⊥CD,
∴ = ,
∴∠CAB=∠BAD=36°,
∵∠BCD=∠BAD,
∴∠BCD=36°,
故选B.
【分析】根据垂径定理推出 = ,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD即可解决问题.
7.【答案】C
【知识点】圆周角定理
【解析】【解答】解:连接BD,
∵∠ACD=30°,
∴∠ABD=30°,
∵AB为直径,
∴∠ADB=90°,
∴∠BAD=90°﹣∠ABD=60°.
故选C.
【分析】连接BD,根据直径所对的圆周角是直角,得∠ADB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠ACD,从而可得到∠BAD的度数.
8.【答案】D
【知识点】圆周角定理
【解析】【解答】解:∵OA=OC,
∴∠A=∠ACO=30°,
∵AB是⊙O的直径,
∴∠BOC=2∠A=2×30°=60°.
故选D.
【分析】由等腰三角形的性质得出∠A=∠ACO=30°,再由圆周角定理即可得出答案.
9.【答案】C
【知识点】圆内接四边形的性质
【解析】【解答】解:
∵A、B、D、C四点共圆,
∴∠GBC=∠ADC=50°,
∵AE⊥CD,
∴∠AED=90°,
∴∠EAD=90°﹣50°=40°,
延长AE交⊙O于点M,
∵AO⊥CD,
∴ ,
∴∠DBC=2∠EAD=80°.
故选C.
【分析】根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得: ,则∠DBC=2∠EAD=80°.
10.【答案】B
【知识点】圆周角定理;扇形面积的计算
【解析】【解答】解:∵AC与BD是⊙O的两条直径,
∴∠ABC=∠ADC=∠DAB=∠BCD=90°,
∴四边形ABCD是矩形,
∴△ABO于△CDO的面积=△AOD与△BOD 的面积,
∴图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,
∵OA=OB,
∴∠BAC=∠ABO=36°,
∴∠AOD=72°,
∴图中阴影部分的面积=2× =10π,
故选B.
【分析】根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论..
11.【答案】D
【知识点】圆周角定理
【解析】【解答】解:连接BC,如图所示:
∵AB是⊙O的直径,
∴∠ACB=∠ACD+∠BCD=90°,
∵∠BCD=∠BAD,
∴∠ACD+∠BAD=90°,
故选:D.
【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.
12.【答案】D
【知识点】圆内接四边形的性质
【解析】【解答】解:连接BD,作OE⊥AD,连接OD,
∵⊙O为四边形ABCD的外接圆,∠BCD=120°,
∴∠BAD=60°.
∵AD=AB=2,
∴△ABD是等边三角形.
∴DE= AD=1,∠ODE= ∠ADB=30°,
∴OD= = .
故选D.
【分析】连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE= AD,∠ODE= ∠ADB=30°,根据锐角三角函数的定义即可得出结论.
13.【答案】140
【知识点】等腰三角形的性质;圆周角定理
【解析】【解答】解:连接AD(如图),
∵AB为⊙O的直径,
∴AD⊥BC,
又∵AB=AC,∠BAC=40°,
∴∠BAD=20°,∠B=70°,
∴弧AD度数为140°.
故答案为140.
【分析】连接AD,根据直径所对的圆周角为直角,可知AD⊥BC,然后根据等腰三角形三线合一的性质,可知AD平分∠BAC,可得∠BAD=20°,然后求得∠B=70°,再根据同弧所对的圆周角等于其所对圆心角的一半,从而得出答案.
14.【答案】8
【知识点】勾股定理;圆周角定理
【解析】【解答】解:连接BD,
∵∠ACB=90°,
∴AB是⊙O的直径.
∵ACB的角平分线交⊙O于D,
∴∠ACD=∠BCD=45°,
∴AD=BD=5 .
∵AB是⊙O的直径,
∴△ABD是等腰直角三角形,
∴AB= = =10.
∵AC=6,
∴BC= = =8.
故答案为:8.
【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.
15.【答案】60°
【知识点】圆周角定理
【解析】【解答】解:∵∠AOB=120°,点C在⊙O上,
∴∠ACB= ∠AOB=60°.
故答案为:60°
【分析】根据∠AOB的度数利用圆周角定理,即可得出∠ACB的度数.
16.【答案】①②③
【知识点】圆周角定理;相似三角形的判定与性质
【解析】【解答】解:①∵OC⊥AB,
∴∠BOC=∠AOC=90°.
∵OC=OA,
∴∠OCA=∠OAC=45°.
∵AC∥OD,
∴∠BOD=∠CAO=45°,
∴∠DOC=45°,
∴∠BOD=∠DOC,
∴OD平分∠COB.故①正确;
②∵∠BOD=∠DOC,
∴BD=CD.故②正确;
③∵∠AOC=90°,
∴∠CDA=45°,
∴∠DOC=∠CDA.
∵∠OCD=∠OCD,
∴△DOC∽△EDC,
∴ ,
∴CD2=CE CO.故③正确.
故答案为:①②③.
【分析】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出 ,得出CD2=CE CO.
17.【答案】3 ﹣ π
【知识点】勾股定理;圆周角定理;扇形面积的计算
【解析】【解答】解:如图所示:设半圆的圆心为O,连接DO,过D作DG⊥AB于点G,过D作DN⊥CB于点N,
∵在Rt△ABC中,∠BAC=30°,
∴∠ACB=60°,∠ABC=90°,
∵以AD为边作等边△ADE,
∴∠EAD=60°,
∴∠EAB=60°+30°=90°,
可得:AE∥BC,
则△ADE∽△CDF,
∴△CDF是等边三角形,
∵在Rt△ABC中,∠BAC=30°,BC=2 ,
∴AC=4 ,AB=6,∠DOG=60°,
则AO=BO=3,
故DG=DO sin60°= ,
则AD=3 ,DC=AC﹣AD= ,
故DN=DC sin60°= × = ,
则S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF
= ×2 ×6﹣ ×3× ﹣ ﹣ × ×
=3 ﹣ π.
故答案为:3 ﹣ π.
【分析】根据题意结合等边三角形的性质分别得出AB,AC,AD,DC的长,进而利用S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF求出答案.
18.【答案】80°
【知识点】圆周角定理
【解析】【解答】解:连接EM,
∵AB=AC,∠BAM=∠CAM,
∴AM⊥BC,
∵AM为⊙O的直径,
∴∠ADM=∠AEM=90°,
∴∠AME=∠AMD=90°﹣∠BMD=50°
∴∠EAM=40°,
∴∠EOM=2∠EAM=80°,
故答案为:80°.
【分析】连接EM,根据等腰三角形的性质得到AM⊥BC,进而求出∠AMD=70°,于是得到结论.
19.【答案】35°
【知识点】圆周角定理
【解析】【解答】解:∵∠AOB=70°,
∴∠C= ∠AOB=35°.
∵AB=AC,
∴∠ABC=∠C=35°.
故答案为:35°.
【分析】先根据圆周角定理求出∠C的度数,再由等腰三角形的性质即可得出结论.
20.【答案】50
【知识点】圆周角定理
【解析】【解答】解:连接CO,
∵∠B=40°,
∴∠AOC=2∠B=80°,
∴∠OAC=(180°﹣80°)÷2=50°.
故答案为:50.
【分析】连接CO,根据圆周角定理可得∠AOC=2∠B=80°,进而得出∠OAC的度数.
21.【答案】130°
【知识点】圆周角定理;圆内接四边形的性质
【解析】【解答】解:∵∠A=115°
∴∠C=180°﹣∠A=65°
∴∠BOD=2∠C=130°.
故答案为:130°.
【分析】根据圆内接四边形的对角互补求得∠C的度数,再根据圆周角定理求解即可.
22.【答案】解:(Ⅰ)连接OC,OD,
∵∠COD=2∠CAD,∠CAD=45°,
∴∠COD=90°,
∵AB=4,
∴OC= AB=2,
∴ 的长= ×π×2=π;
(Ⅱ)∵ = ,
∴∠BOC=∠AOD,
∵∠COD=90°,
∴∠AOD=45°,
∵OA=OD,
∴∠ODA=∠OAD,
∵∠AOD+∠ODA=∠OAD=180°,
∴∠ODA=67.5°,
∵AD=AP,
∴∠ADP=∠APD,
∵∠CAD=∠ADP+∠APD,∠CAD=45°,
∴∠ADP= CAD=22.5°,
∴∠ODP=∠ODA+∠ADP=90°,
∴PD是⊙O的切线.
【知识点】圆内接四边形的性质;切线的判定;弧长的计算
【解析】【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP= CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.
23.【答案】解:(Ⅰ)如图所示,连接OD,
∵点E是△ABC的内心,
∴∠BAD=∠CAD,
∴ = ,
∴OD⊥BC,
又∵∠BDM=∠DAC,∠DAC=∠DBC,
∴∠BDM=∠DBC,
∴BC∥DM,
∴OD⊥DM,
∴直线DM是⊙O的切线;
(Ⅱ)如图所示,连接BE,
∵点E是△ABC的内心,
∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,
∴∠BAE+∠ABE=∠CBD+∠CBE,
即∠BED=∠EBD,
∴DB=DE,
∵∠DBF=∠DAB,∠BDF=∠ADB,
∴△DBF∽△DAB,
∴ = ,即DB2=DF DA,
∴DE2=DF DA.
【知识点】垂径定理;圆周角定理;切线的判定与性质;三角形的内切圆与内心;相似三角形的判定与性质
【解析】【分析】(Ⅰ)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;
(Ⅱ)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF DA,据此可得DE2=DF DA.
24.【答案】(1)证明:∵AB是圆O的直径,
∴∠ACB=90°,
∵DE⊥AB,
∴∠DEO=90°,
∴∠DEO=∠ACB,
∵OD//BC,
∴∠DOE=∠ABC,
∴△DOE~△ABC,
(2)证明:∵△DOE~△ABC,
∴∠ODE=∠A,
∵∠A和∠BDC是弧BC所对的圆周角,
∴∠A=∠BDC,
∴∠ODE=∠BDC,
∴∠ODF=∠BDE。
(3)解:因为△DOE~△ABC ,
所以,
即=4=4
因为OA=OB,
所以=,即=2,
因为=,S2=++=2S1+S1+,
所以=,
所以BE=OE,即OE=OB=OD,
所以sinA=sin∠ODE==
【知识点】圆周角定理;相似三角形的性质;相似三角形的判定与性质
【解析】【分析】(1)易证∠DEO=∠ACB=90°和∠DOE=∠ABC,根据“有两对角相等的两个三角形相似”判定△DOE~△ABC;
(2)由△DOE~△ABC,可得∠ODE=∠A,由∠A和∠BDC是弧BC所对的圆周角,则∠A=∠BDC,从而通过角的等量代换即可证得;
(3)由∠ODE=∠A,可得sinA=sin∠ODE==;而由△DOE~△ABC ,可得,即=4=4=,即=2,又因为=,S2=++=2S1+S1+,则可得=,可求得OE与OB的比值.
25.【答案】解:⑴如图1
,
在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°
⑵如图2
,
在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°
【知识点】等腰三角形的性质;勾股定理的逆定理;圆周角定理
【解析】【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.
1 / 1人教版数学九年级上册第24章 24.1.4圆周角 同步练习
一、单选题
1.(2017·哈尔滨)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是( )
A.43° B.35° C.34° D.44°
【答案】B
【知识点】圆周角定理
【解析】【解答】解:∵∠D=∠A=42°,
∴∠B=∠APD﹣∠D=35°,
故选B.
【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.
2.(2017·咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则 的长为( )
A.π B. C.2π D.3π
【答案】C
【知识点】圆内接四边形的性质;弧长的计算
【解析】【解答】解:∵四边形ABCD内接于⊙O,
∴∠BCD+∠A=180°,
∵∠BOD=2∠A,∠BOD=∠BCD,
∴2∠A+∠A=180°,
解得:∠A=60°,
∴∠BOD=120°,
∴ 的长= =2π;
故选:C.
【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.
3.(2017·烟台)如图, ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则 的长为( )
A. π B. π C. π D. π
【答案】B
【知识点】平行四边形的性质;圆周角定理;弧长的计算
【解析】【解答】解:连接OE,如图所示:
∵四边形ABCD是平行四边形,
∴∠D=∠B=70°,AD=BC=6,
∴OA=OD=3,
∵OD=OE,
∴∠OED=∠D=70°,
∴∠DOE=180°﹣2×70°=40°,
∴ 的长= = ;
故选:B.
【分析】连接OE,由平行四边形的性质得出∠D=∠B=70°,AD=BC=6,得出OA=OD=3,由等腰三角形的性质和三角形内角和定理求出∠DOE=40°,再由弧长公式即可得出答案.
4.(2017·海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( )
A.25° B.50° C.60° D.80°
【答案】B
【知识点】圆周角定理
【解析】【解答】解:∵OA=OB,∠BAO=25°,
∴∠B=25°.
∵AC∥OB,
∴∠B=∠CAB=25°,
∴∠BOC=2∠CAB=50°.
故选B.
【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.
5.(2017·青岛)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为( )
A.100° B.110° C.115° D.120°
【答案】B
【知识点】圆周角定理
【解析】【解答】解:连接AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠AED=20°,
∴∠ACD=20°,
∴∠BCD=∠ACB+∠ACD=110°,
故选B.
【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.
6.(2017·河池)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是( )
A.18° B.36° C.54° D.72°
【答案】B
【知识点】垂径定理;圆周角定理
【解析】【解答】解:∵AB是直径,AB⊥CD,
∴ = ,
∴∠CAB=∠BAD=36°,
∵∠BCD=∠BAD,
∴∠BCD=36°,
故选B.
【分析】根据垂径定理推出 = ,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD即可解决问题.
7.(2017·毕节)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )
A.30° B.50° C.60° D.70°
【答案】C
【知识点】圆周角定理
【解析】【解答】解:连接BD,
∵∠ACD=30°,
∴∠ABD=30°,
∵AB为直径,
∴∠ADB=90°,
∴∠BAD=90°﹣∠ABD=60°.
故选C.
【分析】连接BD,根据直径所对的圆周角是直角,得∠ADB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠ACD,从而可得到∠BAD的度数.
8.(2017·张家界)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是( )
A.30° B.45° C.55° D.60°
【答案】D
【知识点】圆周角定理
【解析】【解答】解:∵OA=OC,
∴∠A=∠ACO=30°,
∵AB是⊙O的直径,
∴∠BOC=2∠A=2×30°=60°.
故选D.
【分析】由等腰三角形的性质得出∠A=∠ACO=30°,再由圆周角定理即可得出答案.
9.(2017·潍坊)如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )
A.50° B.60° C.80° D.90°
【答案】C
【知识点】圆内接四边形的性质
【解析】【解答】解:
∵A、B、D、C四点共圆,
∴∠GBC=∠ADC=50°,
∵AE⊥CD,
∴∠AED=90°,
∴∠EAD=90°﹣50°=40°,
延长AE交⊙O于点M,
∵AO⊥CD,
∴ ,
∴∠DBC=2∠EAD=80°.
故选C.
【分析】根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得: ,则∠DBC=2∠EAD=80°.
10.(2017·山西)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为( )
A.5πcm2 B.10πcm2 C.15πcm2 D.20πcm2
【答案】B
【知识点】圆周角定理;扇形面积的计算
【解析】【解答】解:∵AC与BD是⊙O的两条直径,
∴∠ABC=∠ADC=∠DAB=∠BCD=90°,
∴四边形ABCD是矩形,
∴△ABO于△CDO的面积=△AOD与△BOD 的面积,
∴图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,
∵OA=OB,
∴∠BAC=∠ABO=36°,
∴∠AOD=72°,
∴图中阴影部分的面积=2× =10π,
故选B.
【分析】根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论..
11.(2017·福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是( )
A.∠ADC B.∠ABD C.∠BAC D.∠BAD
【答案】D
【知识点】圆周角定理
【解析】【解答】解:连接BC,如图所示:
∵AB是⊙O的直径,
∴∠ACB=∠ACD+∠BCD=90°,
∵∠BCD=∠BAD,
∴∠ACD+∠BAD=90°,
故选:D.
【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.
12.(2017·黄石)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为( )
A. B. C. D.
【答案】D
【知识点】圆内接四边形的性质
【解析】【解答】解:连接BD,作OE⊥AD,连接OD,
∵⊙O为四边形ABCD的外接圆,∠BCD=120°,
∴∠BAD=60°.
∵AD=AB=2,
∴△ABD是等边三角形.
∴DE= AD=1,∠ODE= ∠ADB=30°,
∴OD= = .
故选D.
【分析】连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE= AD,∠ODE= ∠ADB=30°,根据锐角三角函数的定义即可得出结论.
二、填空题
13.(2017·湖州)如图,已知在 中, .以 为直径作半圆 ,交 于点 .若 ,则 的度数是 度.
【答案】140
【知识点】等腰三角形的性质;圆周角定理
【解析】【解答】解:连接AD(如图),
∵AB为⊙O的直径,
∴AD⊥BC,
又∵AB=AC,∠BAC=40°,
∴∠BAD=20°,∠B=70°,
∴弧AD度数为140°.
故答案为140.
【分析】连接AD,根据直径所对的圆周角为直角,可知AD⊥BC,然后根据等腰三角形三线合一的性质,可知AD平分∠BAC,可得∠BAD=20°,然后求得∠B=70°,再根据同弧所对的圆周角等于其所对圆心角的一半,从而得出答案.
14.(2017·十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5 ,则BC的长为 .
【答案】8
【知识点】勾股定理;圆周角定理
【解析】【解答】解:连接BD,
∵∠ACB=90°,
∴AB是⊙O的直径.
∵ACB的角平分线交⊙O于D,
∴∠ACD=∠BCD=45°,
∴AD=BD=5 .
∵AB是⊙O的直径,
∴△ABD是等腰直角三角形,
∴AB= = =10.
∵AC=6,
∴BC= = =8.
故答案为:8.
【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.
15.(2017·湘潭)如图,在⊙O 中,已知∠AOB=120°,则∠ACB= .
【答案】60°
【知识点】圆周角定理
【解析】【解答】解:∵∠AOB=120°,点C在⊙O上,
∴∠ACB= ∠AOB=60°.
故答案为:60°
【分析】根据∠AOB的度数利用圆周角定理,即可得出∠ACB的度数.
16.(2017·东营)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE CO,其中正确结论的序号是 .
【答案】①②③
【知识点】圆周角定理;相似三角形的判定与性质
【解析】【解答】解:①∵OC⊥AB,
∴∠BOC=∠AOC=90°.
∵OC=OA,
∴∠OCA=∠OAC=45°.
∵AC∥OD,
∴∠BOD=∠CAO=45°,
∴∠DOC=45°,
∴∠BOD=∠DOC,
∴OD平分∠COB.故①正确;
②∵∠BOD=∠DOC,
∴BD=CD.故②正确;
③∵∠AOC=90°,
∴∠CDA=45°,
∴∠DOC=∠CDA.
∵∠OCD=∠OCD,
∴△DOC∽△EDC,
∴ ,
∴CD2=CE CO.故③正确.
故答案为:①②③.
【分析】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出 ,得出CD2=CE CO.
17.(2017·恩施)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2 ,则图中阴影部分的面积为 .(结果不取近似值)
【答案】3 ﹣ π
【知识点】勾股定理;圆周角定理;扇形面积的计算
【解析】【解答】解:如图所示:设半圆的圆心为O,连接DO,过D作DG⊥AB于点G,过D作DN⊥CB于点N,
∵在Rt△ABC中,∠BAC=30°,
∴∠ACB=60°,∠ABC=90°,
∵以AD为边作等边△ADE,
∴∠EAD=60°,
∴∠EAB=60°+30°=90°,
可得:AE∥BC,
则△ADE∽△CDF,
∴△CDF是等边三角形,
∵在Rt△ABC中,∠BAC=30°,BC=2 ,
∴AC=4 ,AB=6,∠DOG=60°,
则AO=BO=3,
故DG=DO sin60°= ,
则AD=3 ,DC=AC﹣AD= ,
故DN=DC sin60°= × = ,
则S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF
= ×2 ×6﹣ ×3× ﹣ ﹣ × ×
=3 ﹣ π.
故答案为:3 ﹣ π.
【分析】根据题意结合等边三角形的性质分别得出AB,AC,AD,DC的长,进而利用S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF求出答案.
18.(2017·株洲)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM= .
【答案】80°
【知识点】圆周角定理
【解析】【解答】解:连接EM,
∵AB=AC,∠BAM=∠CAM,
∴AM⊥BC,
∵AM为⊙O的直径,
∴∠ADM=∠AEM=90°,
∴∠AME=∠AMD=90°﹣∠BMD=50°
∴∠EAM=40°,
∴∠EOM=2∠EAM=80°,
故答案为:80°.
【分析】连接EM,根据等腰三角形的性质得到AM⊥BC,进而求出∠AMD=70°,于是得到结论.
19.(2017·永康模拟)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= .
【答案】35°
【知识点】圆周角定理
【解析】【解答】解:∵∠AOB=70°,
∴∠C= ∠AOB=35°.
∵AB=AC,
∴∠ABC=∠C=35°.
故答案为:35°.
【分析】先根据圆周角定理求出∠C的度数,再由等腰三角形的性质即可得出结论.
20.(2017·扬州)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC= °.
【答案】50
【知识点】圆周角定理
【解析】【解答】解:连接CO,
∵∠B=40°,
∴∠AOC=2∠B=80°,
∴∠OAC=(180°﹣80°)÷2=50°.
故答案为:50.
【分析】连接CO,根据圆周角定理可得∠AOC=2∠B=80°,进而得出∠OAC的度数.
21.(2017·靖远模拟)如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于 .
【答案】130°
【知识点】圆周角定理;圆内接四边形的性质
【解析】【解答】解:∵∠A=115°
∴∠C=180°﹣∠A=65°
∴∠BOD=2∠C=130°.
故答案为:130°.
【分析】根据圆内接四边形的对角互补求得∠C的度数,再根据圆周角定理求解即可.
三、解答题
22.(2017·福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(Ⅰ)若AB=4,求 的长;
(Ⅱ)若 = ,AD=AP,求证:PD是⊙O的切线.
【答案】解:(Ⅰ)连接OC,OD,
∵∠COD=2∠CAD,∠CAD=45°,
∴∠COD=90°,
∵AB=4,
∴OC= AB=2,
∴ 的长= ×π×2=π;
(Ⅱ)∵ = ,
∴∠BOC=∠AOD,
∵∠COD=90°,
∴∠AOD=45°,
∵OA=OD,
∴∠ODA=∠OAD,
∵∠AOD+∠ODA=∠OAD=180°,
∴∠ODA=67.5°,
∵AD=AP,
∴∠ADP=∠APD,
∵∠CAD=∠ADP+∠APD,∠CAD=45°,
∴∠ADP= CAD=22.5°,
∴∠ODP=∠ODA+∠ADP=90°,
∴PD是⊙O的切线.
【知识点】圆内接四边形的性质;切线的判定;弧长的计算
【解析】【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP= CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.
23.(2017·滨州)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.
(Ⅰ)求证:直线DM是⊙O的切线;
(Ⅱ)求证:DE2=DF DA.
【答案】解:(Ⅰ)如图所示,连接OD,
∵点E是△ABC的内心,
∴∠BAD=∠CAD,
∴ = ,
∴OD⊥BC,
又∵∠BDM=∠DAC,∠DAC=∠DBC,
∴∠BDM=∠DBC,
∴BC∥DM,
∴OD⊥DM,
∴直线DM是⊙O的切线;
(Ⅱ)如图所示,连接BE,
∵点E是△ABC的内心,
∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,
∴∠BAE+∠ABE=∠CBD+∠CBE,
即∠BED=∠EBD,
∴DB=DE,
∵∠DBF=∠DAB,∠BDF=∠ADB,
∴△DBF∽△DAB,
∴ = ,即DB2=DF DA,
∴DE2=DF DA.
【知识点】垂径定理;圆周角定理;切线的判定与性质;三角形的内切圆与内心;相似三角形的判定与性质
【解析】【分析】(Ⅰ)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;
(Ⅱ)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF DA,据此可得DE2=DF DA.
24.(2017·苏州)如图,已知 内接于 , 是直径,点 在 上, ,过点 作 ,垂足为 ,连接 交 边于点 .
(1)求证: ∽ ;
(2)求证: ;
(3)连接 ,设 的面积为 ,四边形 的面积为 ,若 ,求 的值.
【答案】(1)证明:∵AB是圆O的直径,
∴∠ACB=90°,
∵DE⊥AB,
∴∠DEO=90°,
∴∠DEO=∠ACB,
∵OD//BC,
∴∠DOE=∠ABC,
∴△DOE~△ABC,
(2)证明:∵△DOE~△ABC,
∴∠ODE=∠A,
∵∠A和∠BDC是弧BC所对的圆周角,
∴∠A=∠BDC,
∴∠ODE=∠BDC,
∴∠ODF=∠BDE。
(3)解:因为△DOE~△ABC ,
所以,
即=4=4
因为OA=OB,
所以=,即=2,
因为=,S2=++=2S1+S1+,
所以=,
所以BE=OE,即OE=OB=OD,
所以sinA=sin∠ODE==
【知识点】圆周角定理;相似三角形的性质;相似三角形的判定与性质
【解析】【分析】(1)易证∠DEO=∠ACB=90°和∠DOE=∠ABC,根据“有两对角相等的两个三角形相似”判定△DOE~△ABC;
(2)由△DOE~△ABC,可得∠ODE=∠A,由∠A和∠BDC是弧BC所对的圆周角,则∠A=∠BDC,从而通过角的等量代换即可证得;
(3)由∠ODE=∠A,可得sinA=sin∠ODE==;而由△DOE~△ABC ,可得,即=4=4=,即=2,又因为=,S2=++=2S1+S1+,则可得=,可求得OE与OB的比值.
25.(2017·南京)“直角”在初中几何学习中无处不在.
如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).
【答案】解:⑴如图1
,
在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°
⑵如图2
,
在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°
【知识点】等腰三角形的性质;勾股定理的逆定理;圆周角定理
【解析】【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.
1 / 1